

High Field Magnets

HFM Annual Meeting Overview of the HFM organisation and operation

Authors: N. Tara, G. Riddone, S. Trofaila

Date: 02.11.2023

Outline

- 1. HFM HFM Programme Office Mandate
- 2. HFM website
- 3. HFM intranet page
- 4. HFM SharePoint websites for the work packages
- 5. HFM EDMS structure
- 6. HFM Indico
- 7. HFM Programme CERN box
- 8. HFM Mattermost channels

HFM Programme Office Mandate

- The HFM Programme Office manages all administrative aspects required by the HFM R&D Programme and assists the HFM Programme Coordinator and Technical Coordination Board in the tracking of resources and schedules
- The HFM Programme Office team:
 - Germana Riddone (Head of the HFM Programme Office)
 - Andrzej Siemko
 - Natalia Tara
 - Sanda Trofaila
 - Sylvie Prodon
 - Valeria Perez Reale, Patrycja Anna Stopa
 - Patricia Clerc

Participate in the definition and implementation of the HM Program management structure, including: WBS, budget structure, EVM, EDMS and master plan documentation.

Follow-up the HFM Programme M+P budget, including registering deliverables and progress through work at CERN and within collaboration agreements via technical contacts.

In collaboration with TE DO organize at least once a year the HM M+P budget scrutiny and propose adjustments for Work Packages at CERN and contributions within the collaboration agreements. Liaise with FAP to ensure an adequate information flow.

Organize administrative and contractual follow-up of collaboration agreements, including organizing the Collaboration Steering Committee meetings

Follow-up, in collaboration with the HFM Program Leader and the organic management line, the documentary aspects for the CERN Work Packages, including the EDMS and EVM.

Support the HFM Program Leader and CERN organic management line to plan and organize periodic resource reports and "Cost and Schedule" reviews of the HFM program.

Develop reporting documentation templates and other document needs, including archiving and creation and update of webpages.

Welcome | HFM General (cern.ch) Public site

02.11.2023

HFM annual meeting 2023

6

HOME GOALS HFM ORGANISATION -COLLABORATORS NEWS

HFM **High Field Magnets**

02.11.2023

HFM annual meeting 2023

- The *home* page contains general information regarding the HFM Programme

- The *goals* page contains the goals of the HFM Programme as defined in the *European Strategy for Particle Physics Accelerator R&D Roadmap* (link to the document) Collaborators page contains general information regarding the current HFM collaborations (logo, link to the institute webpage, description of the Programme)
Intranet page, contains information on how you can access the HFM Intranet site (a sharepoint collaborative website, which contains more information regarding the HFM Programme)

Intranet HFM site

Intranet site for HFM program – Home (sharepoint.com)

Restricted site (CERN account mandatory)

Structure of the site (link)

HFM Meetings and Fora HFM Indico HFM EDMS HFM E-Groups HFM-PROJ Budget Codes HFM Project Office HFM Cost to Completion (CtC) HFM CERN box Intranet site for HFM program + New - 🛞 Page details 🖾 Analytics Home HFM RD lines and Work P ... The HFM Intranet is a Sharepoint Collaborative Workspace for the HFM Project. HFM Meetings and Fora s... Mission of the first phase of the HFM project (2022-2026) HFM Cost to Completion ... · To achieve the long-term goals, a continuous and focused R&D effort is needed. Demonstration of the technology requires a staged approach with intermediate results proving feasibility of the challenging targets HFM Project Office Main goals for 2022-2026 Demonstrate Nb₃Sn potential above 14T and in terms of ultimate performance (target 16T) HFM Documents o Develop Nb₃Sn magnet technology for collider-scale production through robust design, industrial processes and cost reduction (benchmark **HFM Presentations** 12 T) Explore and demonstrate suitability of HTS conductors for building accelerator magnets performing beyond the reach of Nb₃Sn **HFM** Templates Main Events **HFM Project Structure** Calendar Recycle bin Edit Management and Communication Andrzej Siemko RD6 Scientific and RD1 Nb3Sn Conductors Societal impact Forum Thierry Boutboul Enrico Chesta RDS HTS Conductors and Infrastructure and HTS Magnet Technologies Measurement Techniques 4 Amalia Ballarina HFM 🚛 RD4 Modelling Tools, Materials Protection and Nb3Sn Magnets

02.11.2023

Diego Perini

Cryogenics

Relevant documents

RD Line Coordinators and WP Leaders relevant folders

- HFM RD lines and WPs
- HFM meetings and Fora structure
- HFM CtC

CERN

- HFM Documents
- HFM Presentations
- HFM Templates
- HFM main events

HFM

High Field Magnets

HFM Programme Office
(restricted to the members of
the HFM Programme Office

Home

HFM RD lines and Work Packages

HFM Meetings and Fora structure

HFM Cost to Completion (CtC)

HFM Project Office

HFM Documents

European Strategy for Particle Physics Accelerator R&D Roadmap

HFM Presentations

HFM Templates

Main Events

Calendar

Site subpages

1. Intranet site for HFM Programme

- 1.1 HFM RD Lines and Work Packages subpage Link to the page
- The subpage presents the list of the 6 RD Lines with:
 - CERN and Collaborators WPs
 - For each WPs, there is a WP Leader and the CERN Liaison for the collaborations WPs

1.2 HFM Programme Collaboration Structure subpage - Link to the page

• The page presents the HFM - PROJ organizational structure

HFM RD Lines and Work Packages page (link)

In the second second

Home RD Lines page

Home Notebook Pag

Pages Project tracker list

Issue tracker list Recycle bin

+ New ~ 🔯 Page details 🖬 Analytics

Published 23/10/2023 🖄 Share 🗸 🖉 Edit

Edit

RD Line name	RD Line	Work Package	WP Name	RD Line coordinators		Lead Institution	CERN Liaison	Lead Institution
<u>RD0 - Manag</u>	ement and	communication_		A. Siemko	G. Riddone	A. Siemko		
	RD0	WP0.0	Management and communication			A. Siemko		CERN TE-RAS
<u>RD1 - Nb3Sn</u>	Conductors	2		C. Senatore	Th. Boutboul			
	RD1	WP1.1	Nb3Sn conductors for high field magnets - CERN			Th. Boutboul, S. Hopkins		CERN TE- MSC
	RD1	WP1.2	R&D on optimisation of Nb3Sn microstructure and pinning - BAF (KE5074)			A. Leineweber	S. Hopkins	BAF
	RD1	WP1.3	Nb3Sn conductor Jc performance and electro-mechanical properties beyond state-of-the-art UNIGE (KE4663)			C. Senatore	Th. Boutboul	UNIGE
<u>RD2 - HTS Co</u>	nductors a	nd HTS Magnet T	echnologies	A. Kario	A. Ballarino			
	RD2	WP2.1	R&D on accelerator grade HTS REBCO conductors - KIT (KE5283)			B. Holzapfel	Ch. Barth	кіт
	RD2	WP2.2	HTS REBCO tapes, cables and associated technologies - CERN			A. Ballarino		CERN TE- MSC
	RD2	WP2.3	HTS conductors - UNIGE (KE4612)			C. Senatore	Th. Boutboul	UNIGE
	RD2	WP2.5	Demonstrator of the dielectric-insulated REBCO high field magnet coils - CERN			A. Ballarino		CERN TE- MSC
	RD2	WP2.6	HTS high field insert magnets and MuC solenoids - CERN					CERN TE- MSC
	RD2	WP2.7	R&D on mechanical properties of REBCO cables- U-Twente (KE5276)			M. Dahlle	Th. Boutboul	U-Twente
			1					

Η

High Field Magnets

02.11.2023

Important documents (HFM Documents folder)

RD Line Coordinators and WP Leaders relevant documents

- Guidelines
- HFM BCs per RD Line (link)
- HFM Organization (RD Line and WPs)
- HFM RD Line Fora meetings
- HFM templates (reports, presentations, trip request, etc).

Guidelines
HFM BCs per RD Line
HFM Organisation
HFM RD Line Fora meetings
HFM Templates

HFM intranet page access

- The HFM intranet page is a SharePoint collaborative workspace
- We are available to provide advise on the use of the webpage
- To access the page you would need:
 - To have a CERN lightweight account or a CERN NICE account. Please visit the <u>https://account.cern.ch/account/</u> page. The whole process should take only a few minutes. For more details, please follow the instruction detailed on the following link: <u>link</u>
 - You would also need to be registered in our HFM members list, so please contact us on <u>hfm.project.office@cern.ch</u> and we will add you on the list and share the site with you

Intranet pages for the HFM Work packages

Pilot SharePoint page for the WP4.5 (link)

🕖 RD Lines HFM Home Intranet page Home RD Lines page Home Notebook Pages Project tracker list Issue tracker list Recycle bin Edit

+ New - 🛞 Page details 🖾 Analytics

	RD3	WP3.1	- CERN			D. Perini		CERN TE-MSC
	RD3	WP3.2	Nb3Sn single apperture cos0 bladder & keys 12T FALCON D dipole model - INFN (KE4102)			S. Farinon	D. Perini	INFN
	RD3	WP3.3	Nb3Sn robust performance 12T long dipole prototype - CERN			A. Milanese		CERN TE-MSC
	RD3	WP3.4	Nb3Sn magnet Technology Development Program (TDP) - CERN			D. Perini		CERN TE-MSC
	RD3	WP3.5	Nb3Sn ultimate performance dipole models - CERN			J.C. Perez		CERN TE-MSC
	RD3	WP3.6	Nb3Sn ultimate performance R2D2 racetrack dipole demonstrator - CEA (KE3782)			E. Rochepault	J.C. Perez	CEA
	RD3	WP3.7	Nb3Sn ultimate performance common coil dipole demonstrator - CIEMAT (KE3920)			F. Toral	J.C. Perez	CIEMAT
	RD3	WP3.8	Nb3Sn ultimate performance coil stress management dipole model - PSI/CHART (KE4808)			B. Auchman	A. Milanese	PSI/CHART
	RD3	WP3.12	KE5655 CEA collaboration on Nb3Sn ultimate performance R2D2 racetrack dipole demonstrator			E. Rochepault	J. C. Perez	CEA
RD4 - Modelling	<u>Tools, Mater</u>	ials Protection and C	rygg <u>enics</u>	S. Farinon	C. Garion			
	RD4	WP4.1	Model based systems engineering - software tools for design and measurements the HFM R&D programme - CERN			S. Russenschuck		CERN TE-MSC
	RD4	WP4.2	Structural materials for HFM magnets - CERN			C. Garion		CERN TE-VSC
	RD4	WP4.3	Insulation materials for HFM magnet coils and conductors - CERN			R. Piccin		CERN TE-MSC
	RD4	WP4.4	R&D on impregnation materials for HFM magnet colls - ETHZ/CHART (KE4738)			T. Tervoort	R. Piccin	ETHZ/CHART
	RD4	<u>WP4.5</u>	Quench detection, protection and diagnostic methods for Nb3Sn and HTS high-field magnets - CERN			M. Wozniak		CERN TE-MPE
	RD4	WP4.6	Cryogenic and thermal management studies for HFM magnets - CERN			P. Borges de Sousa		CERN TE-CRG
RD5 – Infrastruct	tures and Mea	surement Technique	<u>5</u>					
	RD5	WP5.1	Test infrastructure needs for the HFM R&D programme - CERN			F. Mangiarotti		CERN TE-MSC
	RD5	WP5.2	Infrastructure needs for conductors - CERN			Th. Boutboul		CERN TE-MSC
	RD5	WP5.3	Infrastructure needs for demonstrator and short magnet models - CERN			J.C. Perez		CERN TE-MSC
	RD5	WP5.4	Infrastructure needs for the construction of full-scale prototypes - CERN			A. Milanese		CERN TE-MSC
	RD5	WP5.5	Transducers, instrumentation and measurement equipment needs for the HFM R&D programme - CERN			L. Fiscarelli		CERN TE-MSC
RD 6 - Scientific	and Societal I	mpact Forum		E. Chesta				

Pilot SharePoint page for the WP4.5

SharePoint	\sim Search this site	ସ 🛞
HFM HFM-V	VP4.5	
		☆ Not following 🔏 Site
Home	+ New \vee \$\$ Page details 🖾 Analytics	Published 5/24/2023 🖄 Share 🗸 🔼 Mariusz Wozniak is editing this page 🔓 Edit
SubsitesDocuments	The WP4.5 Intranet is a SharePoint Collaborative Works	space for the HFM Work Package 4.5
Pages	The WP4.5 Intranet page presents the activities of related WP, as follows:	
Site contents	Quench Detection Technology Development	
Notebook	Optimization of HTS conductor for guench detection	
Recycle bin	Advanced signal processing and filtering for detection	
Edit	Temperature based detection methods	
	Novel quench detection methods	
	Impedance based detection methods	
	Conductors for protection	
	Architecture and specification - Nb3Sn	
	Architecture and specification - HTS	
	Protection Limits Development	
	Definition of key measures	
	Establishing target values	
	Simulations for the new measures	
	Protection Technology Development	

EDMS structure used to upload official documents and data

- The HFM EDMS structure is used to:
 - publish and share official, and sensitive documents (collaboration agreements, and associated reports, budget related documents, procurement related documents, master plan documentation)
 - 2. Launch approval circuits
 - 3. Upload minutes of HFM related meetings
 - 4. Any other relevant information regarding the HFM WPs

HFM work packages EDMS structure

🕒 [...]

🔺 💋 HFM

- Image: Provide the second s
- Image: Provide the image of the image of
- Ø RD2 HTS conductor and HTS magnet technologies
- a 💋 RD3 Nb3Sn Magnets
 - Ø WP3.1 Nb3Sn robust performance double aperture 12T cos¿ dipole models CERN
 - INFN WP3.2 Nb3Sn cos¿ bladder & keys FALCON D INFN
 - WP3.3 Nb3Sn robust performance 12T long dipole prototype CERN
 - Ø WP3.4 Nb3Sn magnet Technology Development Program (TDP) CERN
 - WP3.5 Nb3Sn ultimate performance dipole models CERN
 - Ø WP3.6 Nb3Sn ultimate performance R2D2 racetrack dipole demonstrator CEA
 - VP3.7 Nb3Sn ultimate performance common coil dipole demonstrator CIEMAT
 - Ø WP3.8 Nb3Sn ultimate performance coil stress management dipole model PSI/CHART
 - 2892833 (v.1) TE-MSC Strategy Update and Budget Request for HFM/LTS
 - 2914038 (v.1) TE-MSC Strategy Update and Budget Request for HFM/HTS
- > Ø RD4 Modelling tools, Material protection and Cryogenics
- Ø Construction of the provided and Measurement techniques
- Image: Constant of the provided and solved and the provided and the pro

- Each work package has his own node.
- Inside this node, the sub-nodes will have to be standardized as much as possible.
- The creation of the sub-nodes will be done by the HFM
 Programme Office after the Programme Leader approval
- Feel free to make a proposal of sub-nodes for your respective WP
- Access to the collaboration node can be customized on request

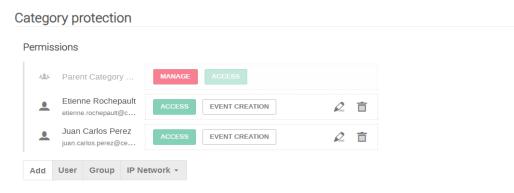
HFM Meetings

The HFM Indico page serves as a platform for creating and managing HFM-related meetings and events.

Indico High Field Magnets – HFM · Indico (cern.ch)

Home » Departments » TE » Projects » High Field Magnets – HFM			
High Field Magnets – HFM	Enter your search term	Q	

HFM - General Meetings	4 events		•••
HFM - Management Meetings	28 events	٢	
HFM - Collaboration Meetings	25 events	٢	
HFM - Workshops and annual meetings	5 events		•
HFM - POM meetings	65 events	٢	•
HFM - TSC Meetings	19 events	٢	•••
HFM - RD Line Fora	9 events		•


HFM – Collaboration meetings

HFM - Collaboration Meetings

CEA ≓ 前

- A category per collaboration was created.
- Each collaboration folder regroups all the meetings for the relevant collaboration.
 Furthermore, for each category, only the participants to the specific collaboration meeting have access rights.
- The CERN and Institute technical contacts have event creation rights

KIT	1 event	
CEA	9 events	
INFN	7 events	
CIEMAT	1 event	
UNIGE	2 events	
PSI - CHART	2 events	
SPIN	1 event	
University of Twente	2 events	

Q

TSC meetings

HFM - TSC Meetings

Enter your search term

Q

HFM - TSC - RD1 (CERN)	1 event	••••
HFM - TSC - RD2 (CERN)	1 event	•
HFM - TSC - RD3 (CERN)	4 events	•
HFM - TSC - RD4 (CERN)	3 events	•
HFM - TSC - RD5 (CERN)	2 events	•
HFM - TSC - RD6 (CERN)	1 event	••••
HFM - WPs Progress Meetings (Summer 2023)	7 events	•

RD Line Fora meetings

HFM - RD Line Fora		Enter your search ter	m	Q,			
RD 1 Fora me	tings	2 events					
RD 2 Fora Mee	tings	2 events					
RD 3 Fora Mee	atings	2 events					
RD 4 Fora Mee	atings	2 events					
RD 5 Fora Mee	atings	1 event					
RD 4 Fora Meetings		Enter your search term		Q Create	event - Ø Navigat	Parent category	
	August 2022					Q Managers	
	August 2023	l Cryogenics				Cedric GarionStefania Farinon	
	There is one event in the past. Show					🖉 Materials	
						There are no materials y	et.

- RD Fora meetings are publicly accessible and are designed to facilitate discussions and collaboration on relevant topics.
- Access to documents can be restricted on special request
- The aim is to organize a forum meeting every 6 weeks

High Field Magnet

CERN

HFM WPs general meetings

FM - HFM WPs meeting	S	Enter your search term	Q Create event - Ø Navi	igate 1 Parent category
				Q Managers
	HFM - WP3.1 meetings	2 events (🔿		44 hfm-wp-cern
	HFM - WP4.5 meetings	2 events (🔿		Ø Materials
	HFM - WP3.6 CEA (KE3782) meetings	1 event (🔿		There are no materials yet
	June 2023			
	29 Jun TE-MSC Strategy Update for HFM / Resources (MSC)	WP1, 2, 3		
	19.Jun WP4 Test Measurement and Analyses - May 2023 vs M	Nov 2022 estimations		

HFM - WP4.5 meetings		Enter your search term	Q	Create event *	Ø Navigate	Parent category		R	☆
	May 2023				Ω Managers▲ Mariusz Wozniak				
	10 May T5-D1 - 12 T Robust - Initial quench protection study - 2 🖲					Ø Materials			Q
	There is one event in the past. Show					There are no materials ye	t.		

Upon request from WP Leader, the HFM Programme Office can create a WP folder which is to be managed by the WP Leader

Н

HFM CERN box

CERNBox > eos > project > h > hfm-programme

<u>↑</u> Upload

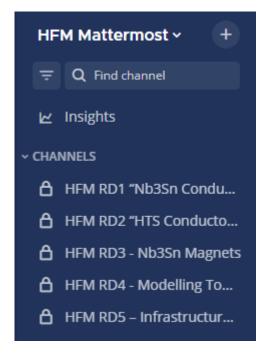
+ New

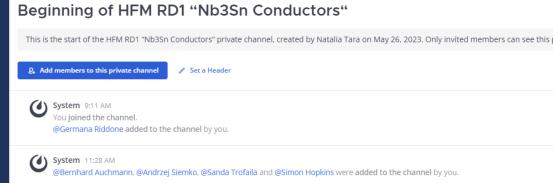
hfm-programme

□ Name ↓	Shares	Size	
HFM Guidelines	8	925 kB	
HFM Organisation	8	37 kB	
HFM RD Line Fora meetings	8	51 kB	
HFM templates	8	9 kB	
private	8	0 B	
public	8	0 B	
www	8	0 B	

The HFM CERN Box is a platform for sharing and storing information and collaborative files. Currently, access to the HFM CERN Box is granted to RD Line coordinators and WP leaders.

Link to the HFM Programme CERN box - <u>link</u>


Please contact the HFM Programme Office so we can add you to the HFM dedicated list in order to access the box



HFM-PROJ Mattermost channels

Mattermost is a platform which provides features for real-time messaging, file sharing, and team organization

Write to HFM RD1 "Nb3Sn Conductors"

Link to the guide on how to download and use the Mattermost app - <u>link</u> We kindly request the RD coordinators to either directly add the interested individuals or provide us with the list, and we will ensure their inclusion.

Thanks for your attention

HFM High Field Magnets