

HFM – WP2.6 UHF Solenoids for the Muon Collider

HFM

High Field Magnets

Presented by L. Bottura, CERN on behalf of the Muon Magnets Working Group

HFM annual meeting 2023, 30 October - 2 November 2023

Funded by the EU under Grant Agreement 101094300

Outline

- Magnet development targets
- HF and UHF solenoids
- R&D status and plans

Outline

- Magnet development targets
- HF and UHF solenoids
- R&D status and plans

Muon Collider magnets

CÈRN

Radiation heat load ≈ 5 W/m Radiation dose ≈ 20...40 MGy

11.28 10.39 9.511 8.624

7.737

7.737 6.850 5.963 5.076 4.189 3.302 2.415 1.528 0.641

Magnet development targets

Complex	Magnet	Aperture (mm)	Length (m)	Field (T)	Ramp rate (T/s)	Temperature (K)
Target, decay and capture channel	Solenoid	1200	19	20	SS	20
6D cooling channel	Solenoid	901500	0.080.5	415	SS	4.220
Final cooling channel	Solenoid	50	0.5	> 40	SS	4.2
Rapid cycling synchrotron	NC Dipole	30x100	5	± 1.8	4200	300
Rapid cycling synchrotron	SC Dipole	30x100	1.5	10	SS	4.220
Collider ring	Dipole	160100	46	1116	SS	4.220

Outline

- Magnet development targets
- HF and UHF solenoids
- R&D status and plans

This looks more like a *fusion magnet*, not much synergy with HFM

6D Cooling

J. Pavan (UMIL) S. Fabbri (CERN)

V

V

V

V

V

V

V

V

V

V

V

5

J

3

V

V

~

J

240

88

165

92

0

6

24.4

4

4

B4-2

B5-1

85-7

320

100

106

410

113

34.7

Mechanics Mechanics

70.3

157

168

185

155.1

198

155

220

7.8

13.9

12.3

14.2

10.3

14.3

10.1

15.1

66

336

159

314

118

244

119

119

-23.5

-0.7/21.1

-55.7

-1.4/22.3

-43.1

-1.1/20.7

-37.4

B4

1.27

Courtesy of J. Pavan, UMIL, and S. Fabbri, CERN

46 identical **'modular'** pancakes and **6 'correction'** pancakes are used to straighten the field lines at the solenoid ends

Courtesy of B. Bordini and A. Dudarev, CERN

Final cooling (40 T) mechanics

Preloading, a **radial precompression of** ~ **200 MPa** is essential to limit the conductor hoop stress to acceptable values and to prevent tensile radial stress.

Electro-mechanical design and tests are in progress to validate the concept and identify issues/solutions towards assessing the performance limits.

Courtesy of B. Bordini and C. Accettura, CERN 10

Final cooling (40 T) quench

At this magnet scale (i.e. stored energy and size) a **non-insulated winding** seems to be a good option for quench management. Transverse resistance control in a range suitable for operation, balancing protection, mechanics, ramp time and field stability will be crucial (**priority R&D**)

Courtesy of T. Mulder and G. Vernassa, CERN

Outline

- Magnet development targets
- HF and UHF solenoids
- R&D status and plans

Conductor Testing

Initial set of samples collected from leading manufacturer to allow for initial screening and characterization measurements

Manufacturer	Tape length		width
		(m)	(mm)
THEVA	TPL4421 - QS0037	414	4
SST	YP-448	25	12
Superpower	SCS12050-AP-M3-1221-9	100	12
SuperOx Japan	3209 N2	0.7	4
SST		25	4
SuperOx Japan	3155L_Cu_545_555	10	4
SuperOx Japan	2513C_Cu_106_116	10	4
SuperOx Japan	3625L_Cu_787_797	10	4
SuperOx Japan	3045R_Cu_1185_1195	10	4
SuperOx Japan	3661L_Cu_1468_1478	10	4
SuperPower	SCS4050-HM	10	4
Fujikura	FESC-SCH02	10.7	2

To be complemented with material presently in procurement at CERN and INFN

University of Geneva Critical current characterization at high field and scaling relations Delamination experiments (see

Delamination experiments (see presentation from C. Senatore)

University of Twente

- Electro-mechanical tape characteristics in longitudinal and transverse stress/strain
- Stack cable concept, design and characterization

Southampton University

Insulated pancake manufacturing and testing à la EUCard2 (tape performance and quench characteristics) in field up to 10T/100mm bore and at temperatures between 77K and 4.2K vapour or liquid cooled

Funding: HFM

REBCO procurement

		Nominal coated conductor width		eters	Specifie	1	Comments After copper coating		
(CERN)	European Organization for Nuclear Research			ctor width	(mm) 4.0 ± 0.050				50
Organisation européenne pour la recherche nucléaire			Substrate material			High-stren alloy	gth No	Non-magnetic alloy such as Hastelloy C-276	
EDMS No. 1	2960999	DO-33893/ATS	Substrate thickness		(µm)	40 to 60	Acc col	eptable range, must remain nstant through production	
		Group Code: ATS	Copper residual resisti	ivity ratio	(-)	-	Ex	pected range is 30 to 100	
					Spe	ecification	Target	ickness is intended as total,	
		Minimum Ic (4.2 K, 20 T)		(A)		240	480	neous coating on both faces	
Price Enquiry		Minimum benchmark Ic (4	4.2 K, 5 T)	(A)		577		f the coated conductor	
		Minimum n value at 1µV/cm		(-)		15		ptable range, must remain	
	Technical Specification	Maximum standard deviation $\sigma(I_{c}(4.2 \text{ K}, 20 \text{ T}))$		(%)		-	5	must be no dog-boning and	
		Minimum J _{Cnon-Cu} (4.2 K, 2	20 T)	(A/mm ²))	-	3000	ges after copper coating	
	Supply of REBCO Coated Condu	Minimum J _{Cnon-Cu} (20 K, 20 T)		(A/mm ²))	-	1200		
	tor Marca Callidar Salar side D 8 F	Minimum unit length		(m)		200	1000		
Muon Collider Solenoids R&L		Minimum bending radius		(mm)		10	5		
	Abstract	Allowable non-Cu σ_{longitud}	gitudinal non-Cu (4.2 K) (MPa) 800 1000		1000				
	This Technical Specification concerns the supply of up to 9.0	Allowable compressive $\sigma_{transverse}$ (4.2 K)		(MPa)		300	600		
REBCO coated conductor, to be quoted and delivered in batch Delivery completion is foreseen over seven months from notic Contract.	Allowable tensile $\sigma_{transverse}$ (4.2 K)		(MPa)		> 5	50			
	Delivery completion is foreseen over seven months from notif Contract.	Allowable shear $\tau_{transverse}$ (4.2 K)		(MPa)		> 5	50		
		Range of allowable Elongitud	inal	(%)	-(0.10.4	-0.10.5		
		Internal specific resistance	e p _{transverse} (77 K)	$(n\Omega \ cm^2)$)	-	20		
DO	33893 published							-	

up to 9 km of 4 mm REBCO tape, in batches of 3 km (option for additional 3 km), to be used to wind pancakes for solenoid R&D. The plan is to follow-up with 15 km of 4 mm REBCO tape in late 2024.

Funding: IMCC+MuCol

R&D Pancakes – 1/2

Singe and stacked pancake tests are planned to validate the concept and identify issues/solutions towards assessing the performance limits.

- 60 mm inner diameter
- 20 mm and 60 mm thickness
- 4 mm and 12 mm tape width
- Single and double pancakes winding
- One- and two-in-hand winding

Field reach: 15...25 T

Winding trials EP-ADO Tooling and material test EN-MME

Prototype winding by courtesy of A. Dudarev, CERN 15

Funding: IMCC+MuCol

R&D Pancakes – 2/2

The R&D pancakes will probe geometry and operating conditions well beyond the present state-of-the-art

Courtesy of S. Sorti, UMIL and INFN LASA 16

Are solenoids relevant ?

- Solenoid model coils built with modest conductor lengths and size (few km) can probe performance limits at extreme values:
 - Field (20 T...40 T) high and ultra-high field characterization of the critical surface $J_{c}(B,T,\alpha)$
 - Force and stress (500 MPa...700 Mpa) engineering test at levels relevant and beyond fullsize accelerator magnets
 - Current density (600 A/mm²...900 A/mm²) and energy density (300 MJ/m³) – quench detection and protection in a new regime, where present technical solutions may not work (detection time would be too short, quench heater power would be too high)

"Simple" engineering, fast turnaround samples

Summary and perspective

- The magnet activities in the scope of the International Muon Collider Collaboration (IMCC) and the EU design study MuCol have a strong focus on HF and UHF HTS solenoids
 - We wish to probe the limits of present technology, and define the R&D required to achieve such performance (MuCol and ESPP deliverable)
 - **This work is instrumental** to achieving the muon collider luminosity targets (i.e. performance beyond US-MAP)
 - This technology development connects directly to the R&D in the scope of HFM
 - Share technology challenges and advances, and profit from capabilities within RD2 (e.g. KC4)
 - Recall that **the technology developed is also relevant for other magnets**, such as arc dipoles and IR quadrupoles for the Muon Collider (steady state)
 - HF and UHF HTS solenoids will be one of the leading themes in the upcoming INFRA-TECH EU call

C. Accettura, N. Amemiya, B. Auchmann, J.S. Berg, A. Bersani, A. Bertarelli, F. Boattini, B. Bordini, M. Breschi, B. Caiffi, X. Chaud, F. Debray, A. Dudarev, M. Eisterer, S. Fabbri, S. Farinon, P. Ferracin, H. De Gersem, A. Kario, A. Kolehmainen, J. Kosse, J. Lorenzo Gomez, R. Losito, S. Mariotto, M. Mentink, T. Mulder, R. Musenich, D. Novelli, T. Ogitsu, M. Palmer, J. Pavan, H. Piekarz, A. Portone, L. Quettier, E. Rochepault, L. Rossi, T. Salmi, H. Schneider-Muntau, C. Senatore, M. Statera, P. Tavares, H.H.J. Ten Kate, P. Testoni, G. Vallone, A. Verweij, M. Wozniak, A. Yamamoto, Y. Yang, Y. Zhai, A. Zlobin, and the Muon Magnets Working Group

Risk register and mitigation (the plan)

Risk	Mitigation action (program)	Tests (tape length)
Reaching field/sub- optimal performance	Use pancakes to test performance (force and thermal cycles) and compare to expected performance from characterized tapes (NOTE: need of complete Ic(B,T,angle) scaling)	10 sub-size (500) 5 full-size (1250)
Tape degradation during coil manufacturing	Test performance before/after winding at 77 K, partly covered by previous item. Dedicated tests to be performed for: soldering or potting, double pancakes and transitions, joints	10 sub-size (500)
Coil internal mechanics and mechanical properties	Instrumented stacks and dummy pancakes to verify stress components and distributions. Reinforcements and bonding of turns	20 stacks (200) 10 dummy (500) 10 sub-size loading (500)
Coil external mechanics and pre-load	Pre-loading structure development and tests	5 dummy (250) 5 sub-size loading (250) 5 full-size loading (1250)
Inter-turn resistance control and variants	Produce baseline windings (e.g. soldered, no insulation control) and variants introducing intrinsic and extrinsic resistance control	15 sub-size (750)
Joints resistance and stability	Produce test configuration for pancake joints and unit electrical/mechanical test. Integrate joints in pancakes and test resistance and stability (force and thermal cycles)	20 single joints (200) 10 sub-size (500) 2 full-size (500)
Quench detection	Introduce and test diagnostics in above tests. Select baseline (voltage ?) for comparison	Use above pancakes for dedicated tests
Quench protection	Test energy release and temperature increase in provoked and spontaneous quenches	Use above pancakes for dedicated tests
Coil dynamic forces	Test mini-coil stacks of pancakes	12 full-size (3000)

Total approximately 10 km of 4 mm tape

HTS tape specifications – 1/2

Geometry and composition parameters		Specified	Comments
Nominal coated conductor width	(mm)	4.0 ± 0.050	After copper coating
Substrate material		High-strength alloy	Non-magnetic alloy such as Hastelloy C-276
Substrate thickness	(µm)	40 to 60	Acceptable range, must remain constant through production
Copper residual resistivity ratio	(-)	-	Expected range is 30 to 100
Total copper coating thickness	(µm)	20 (2x10)	This thickness is intended as total, <u>i.e.</u> twice the thickness of a homogeneous coating on both faces of the coated conductor
Coated conductor thickness	(µm)	60 to 100	Acceptable range, must remain constant through production
Coated conductor thickness tolerance and homogeneity	(µm)	± 5	There must be no dog-boning and bulges after copper coating

HTS tape specifications – 2/2

		Specification	Target
Minimum I _c (4.2 K, 20 T)	(A)	240	480
Minimum benchmark Ic (4.2 K, 5 T)	(A)	577	
Minimum n value at 1µV/cm	(-)	15	
Maximum standard deviation $\sigma(\underline{I_c}(4.2 \text{ K}, 20 \text{ T}))$	(%)	-	5
Minimum J _{Cnon-Cu} (4.2 K, 20 T)	(A/mm ²)	-	3000
Minimum J _{Cnon-Cu} (20 K, 20 T)	(A/mm ²)	-	1200
Minimum unit length	(m)	200	1000
Minimum bending radius	(mm)	10	5
Allowable non-Cu $\sigma_{\text{longitudinal non-Cu}}$ (4.2 K)	(MPa)	800	1000
Allowable compressive $\sigma_{\text{transverse}}$ (4.2 K)	(MPa)	300	600
Allowable tensile $\sigma_{\text{transverse}}$ (4.2 K)	(MPa)	> 5	50
Allowable shear $\tau_{\text{transverse}}$ (4.2 K)	(MPa)	> 5	50
Range of allowable $\varepsilon_{\text{longitudinal}}$	(%)	-0.10.4	-0.10.5
Internal specific resistance ptransverse (77 K)	$(n\Omega \ cm^2)$	-	20

Magnetic field reach

MuC final cooling 40 T: ≈720 MPa

Stacked pancakes

Minimum magnetic energy approximately 5.4 kJ/m (1.4 times the gap energy) Minimum loss approximately 400 J/m cycle (about 2 kW/m)

CERN

A *simple* HTS racetrack dipole could match the beam requirements and aperture

Courtesy of M. Breschi, P.L. Ribani, R. Miceli, UniBO 2

Collider magnets – A-B plots

- Work in progress to provide analytical expression for the magnet design limits (including protection and cost)
- Nb₃Sn falls short of required performance because of **operating margin** and peak stress (at affordable cost !)
- HTS falls short of required performance because of peak stress and protection (at affordable cost !) **Need to devise alternative protection schemes**

Courtesy of D. Novelli, S. Mariotto, B. Caiffi, INFN, and T. Salmi, TUT 28

Collider magnets – A-B range

A reduction of HTS cost will result in wider design A-B range

- Reducing unit cost by a factor four doubles the allowable magnet aperture at 16 T
 - A reduction of one order of magnitude would be required to reach (16 T, 150 mm)
- Operation in the range of temperature 10 K...20 K (above liquid helium) will reduce magnet aperture requirements
 - Acceptable heat loads is increased by a factor 2...4, thus reducing the need for shielding
- Iterate with beam physics as the nominal optics and adjust design targets in accordance. **Typical A-B range can be (12 T, 160 mm) to (16 T, 100 mm)**
- Include quadrupoles in the analytical evaluation of A-B limits

Courtesy of D. Novelli, S. Mariotto, B. Caiffi, INFN, and T. Salmi, TUT 29

Energy efficient cryogenics $W/Q = (T_h - T_c)/T_c$

HTS may be the only path towards a future collider

Impressive cost reduction in HTS!

Compact HTS windings

Need to increase the winding current density to fall in a *reasonable* range of tape length

Unresolved issues:

- Winding geometry for tapes and stacks (ends, alignment, transposition, ...)
- Mechanics of coils under the exceptional electromagnetic loads (600 MPa longitudinal, 400 MPa transverse)
- Quench management at high current and energy density (up to 300 MJ/m³)
- Radiation hardness of materials and coils (40...80 MGy and 10^{22} n/m²)

The HEP push towards HTS

HTS needs for a muon collider

Massive, but not unreasonable: LHC wire was the same order of magnitude

Muon collider vs. high field magnets

Muon final cooling magnet 40 T at 4.2 K, 60 mm

LNCMI/CEA Nougat HTS insert 32.5 T in 50 mm (12. 5 T HTS + 20 T resistive)

HTS insert of NHMFL all SC 32 T 32 T in 40 mm (15 T LTS + 17 T HTS)

Muon collider vs. fusion

Large bore solenoids, large heat and radiation

Muon collider vs. life science

Muon final cooling magnet 40 T at 4.2 K, 60 mm

HEALTH TECH SCIENCE 14 TESLA MRI SCANNER MRI RADBOUD UNIVERSITY » MORE TAGS

MONDAY, 20 FEBRUARY 2023 - 13:05

Strongest MRI in the world to be built in Netherlands

The Netherlands will soon house the strongest MRI scanner in the world with a magnetic field strength of 14 Tesla. A consortium of seven partners, led by Radboud University's Donders Institute for Brain, Cognition, and Behavior, will build the MRI scanner in Nijmegen with a 19 million euros Roadmap grant received from NWO.

BRUKER

CFRN

Fujikura and Bruker Collaboration: A 1.2 GHz NMR Magnet Built

Fujikura with Japanese HTS Tape Reaches Field at Bruker's Factory

Push field performance beyond state-of-the-art

in 🕓 🕳

Muon collider vs. power generation

Small-size stator for PM generator

Maded Pilot Transcorrection of the distance o

Design of 10 MW HTS wind generator

Develop compact saddle HTS windings