Treatment of Detector Systematics via Likelihood-free Inference NuXtract Workshop, Oct. 3rd, 2023

A paper by:

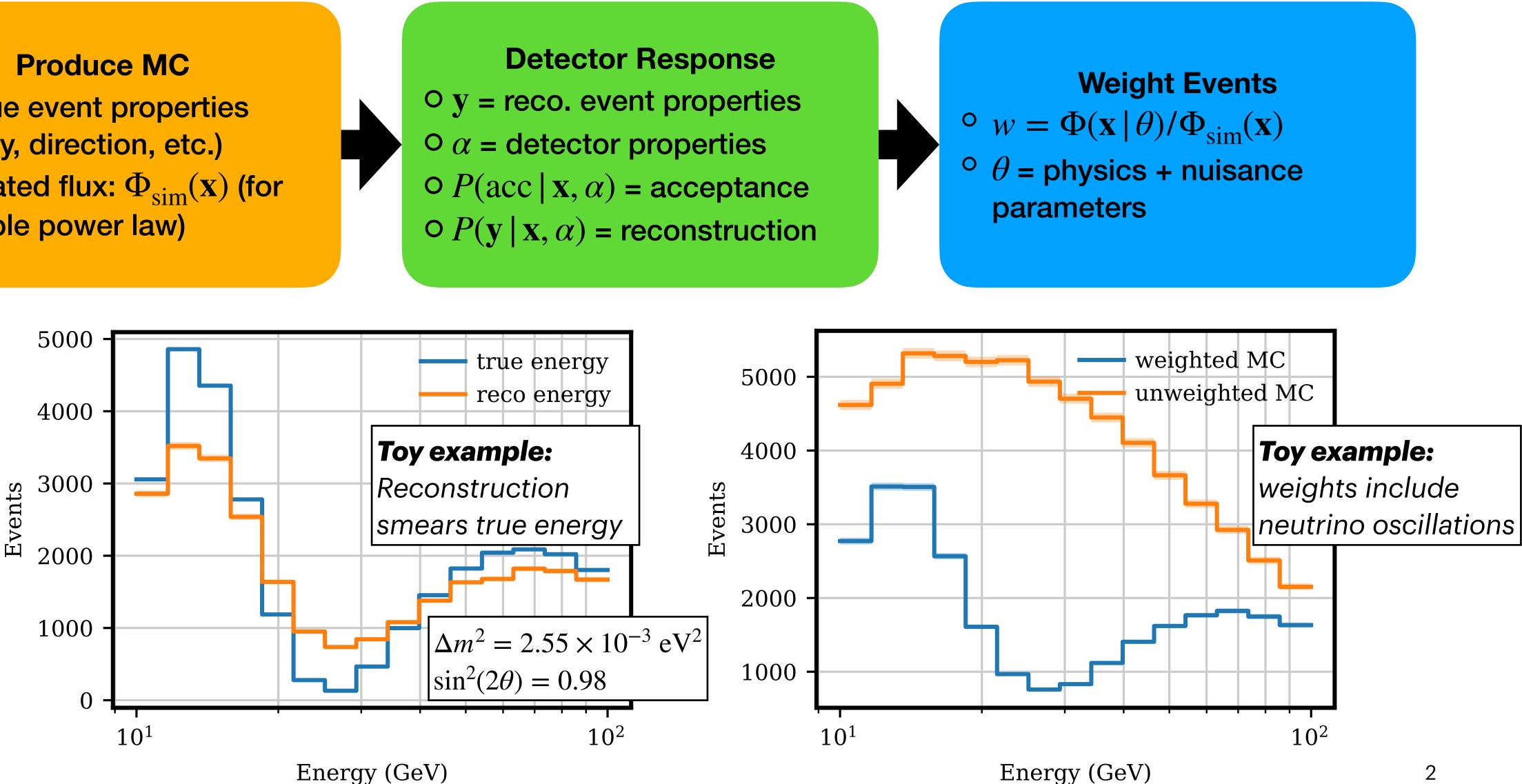
Alexandra Trettin, University of Manchester Leander Fischer, DESY **Richard Naab, DESY**

arXiv (accepted preprint): <u>2305.02257</u> **GitHub:** LeanderFischer/ultrasurfaces

Introduction: Monte-Carlo Forward-Folding

This nomenclature will be used all throughout the talk!

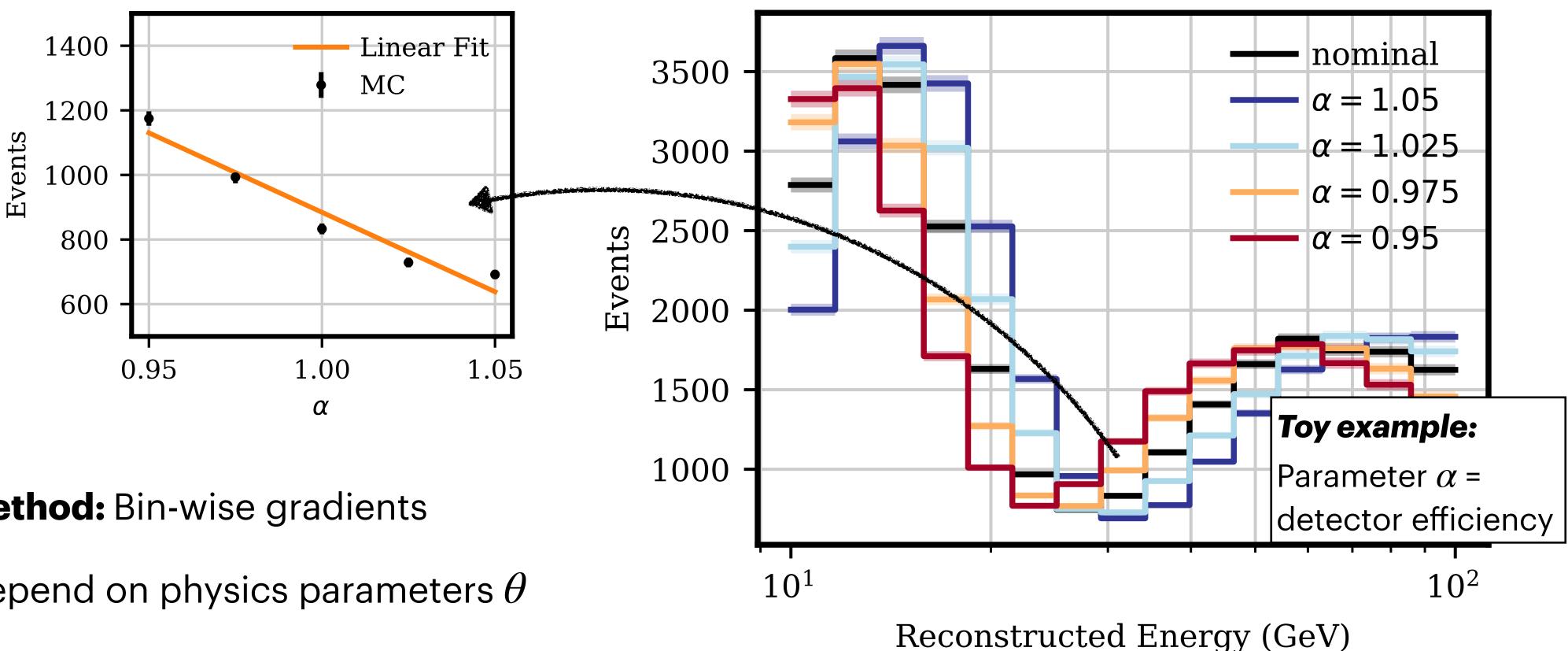
 $\circ \mathbf{x}$ = true event properties (energy, direction, etc.) O Simulated flux: $\Phi_{sim}(\mathbf{x})$ (for example power law)



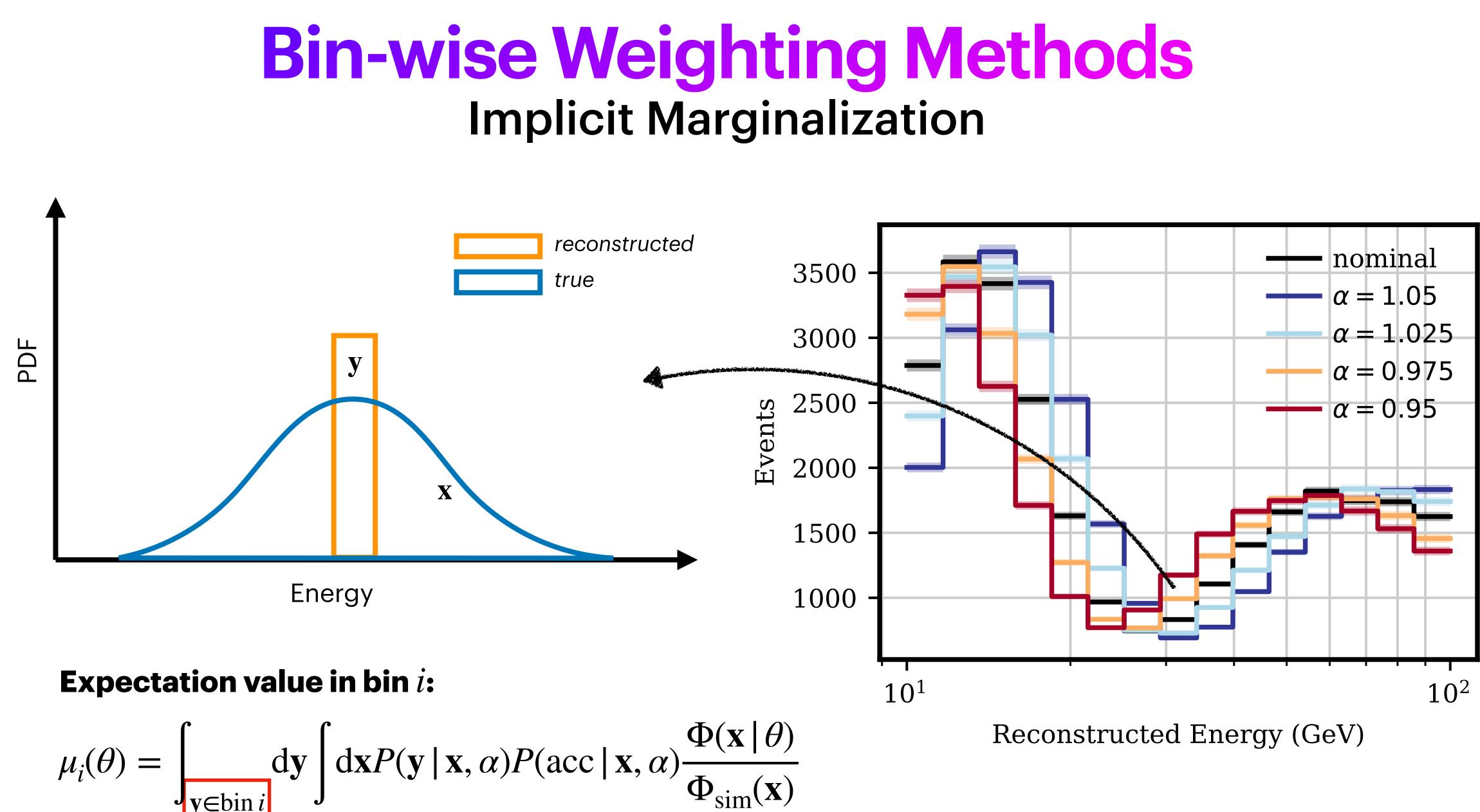
Energy (GeV)

Modeling of Detector Effects Bin-wise weighting method

Fit in One Bin

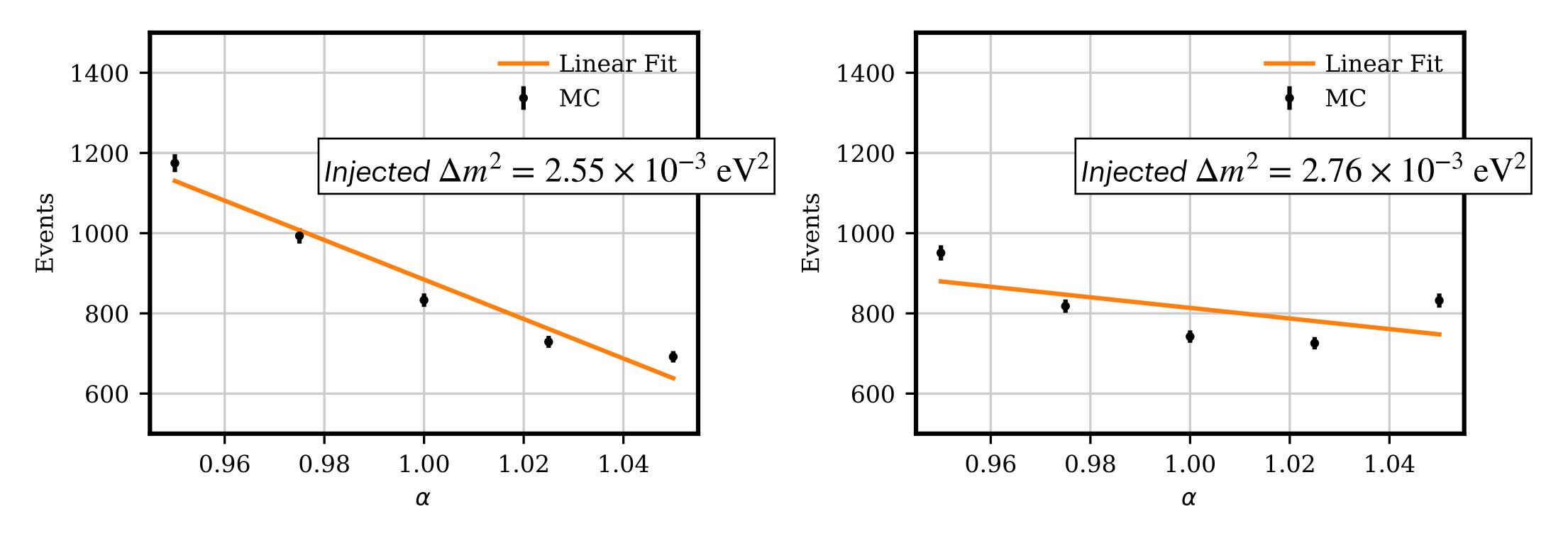


- **Simplest method:** Bin-wise gradients
- **Problem:** Depend on physics parameters θ



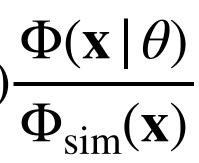
$$\mu_i(\theta) = \int_{\mathbf{y} \in \text{bin } i} d\mathbf{y} \int d\mathbf{x} P(\mathbf{y} | \mathbf{x}, \alpha) P(\text{acc} | \mathbf{x}, \alpha)$$

Bin-wise Weighting Methods Gradients' dependence on Physics Parameters



Expectation value in bin *i*:

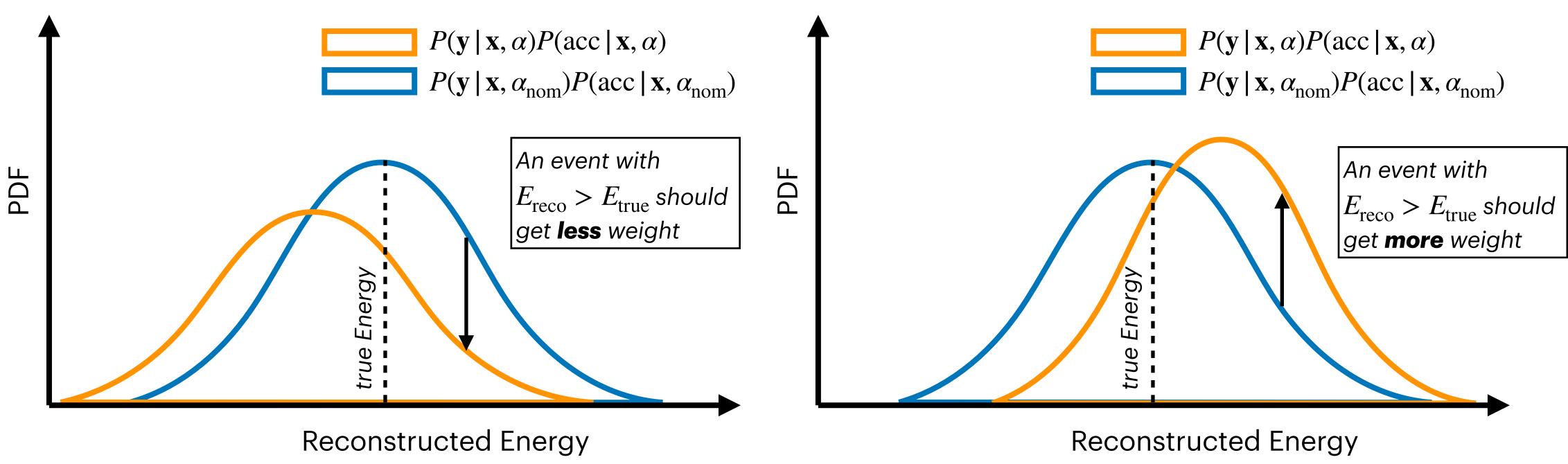
$$\mu_i(\theta) = \int_{\mathbf{y} \in \text{bin } i} d\mathbf{y} \int d\mathbf{x} P(\mathbf{y} | \mathbf{x}, \alpha) P(\text{acc} | \mathbf{x}, \alpha)$$



Gradient in one bin $\nabla_{\alpha}\mu_i$ requires integrating over true event properties

Decoupling Detector Effects Event Weights Should be Independent from Initial Flux

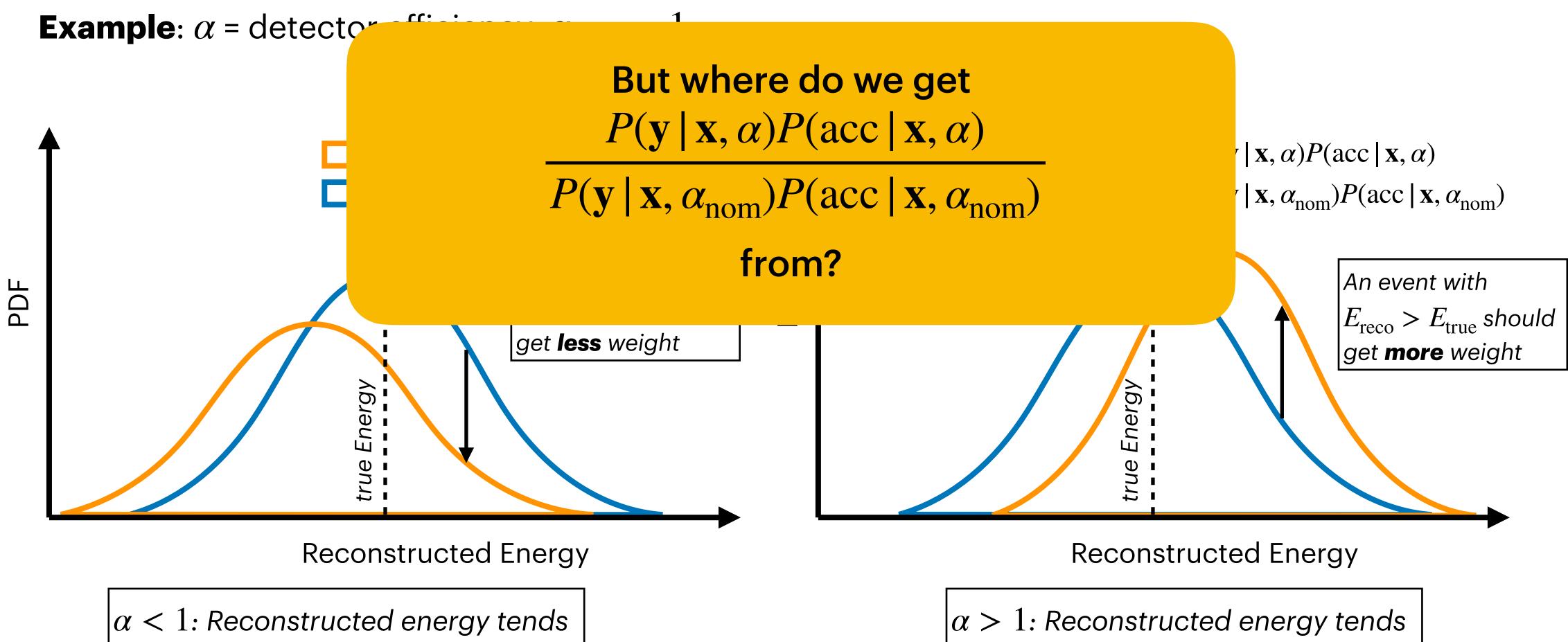
Example: α = detector efficiency, $\alpha_{nom} = 1$



 $\alpha < 1$: Reconstructed energy tends to be smaller than true energy

 $\alpha > 1$: Reconstructed energy tends to be larger than true energy

Decoupling Detector Effects Event Weights Should be Independent from Initial Flux

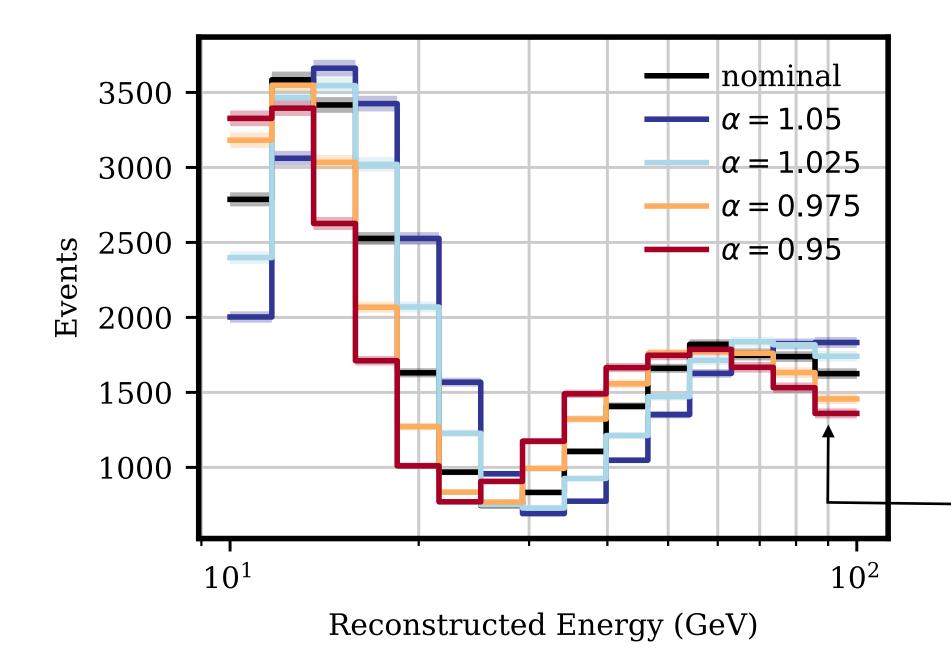


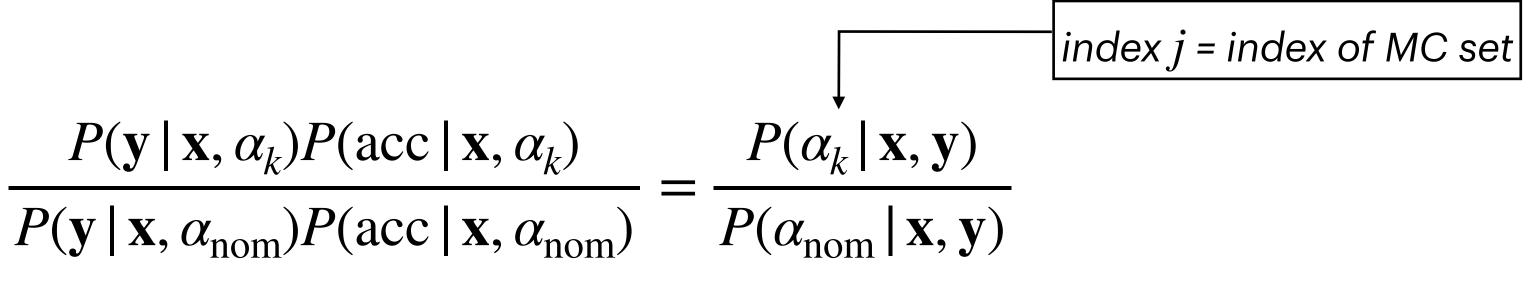
to be smaller than true energy

to be larger than true energy

The Likelihood-free Inference Trick Weighting from Nominal to Any Off-Nominal MC Set

Applying Bayes' Theorem:



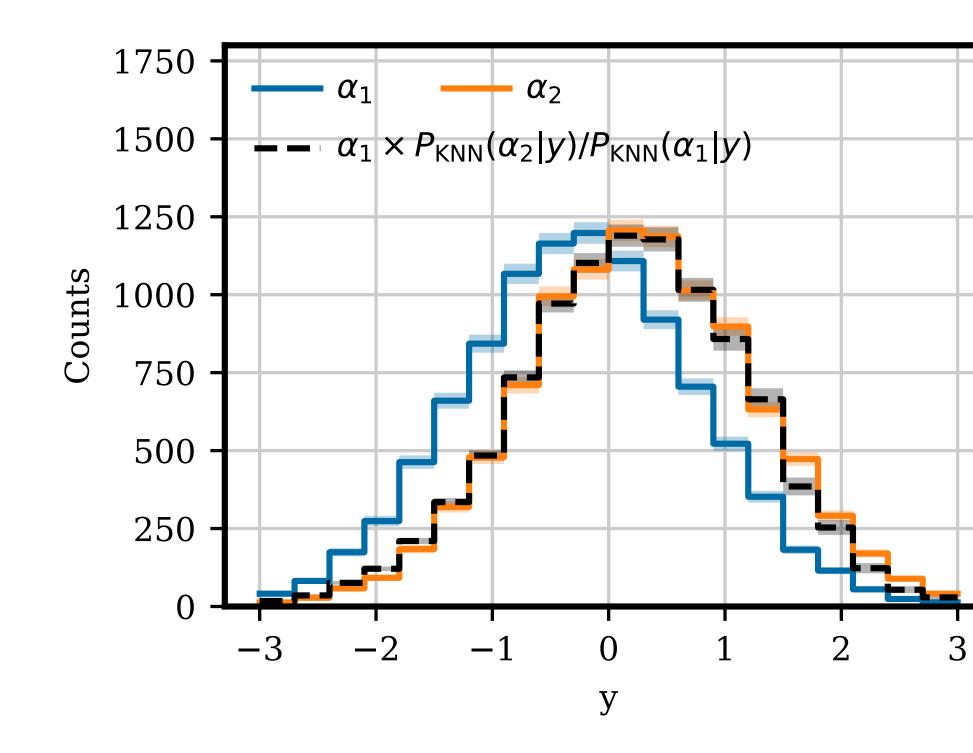


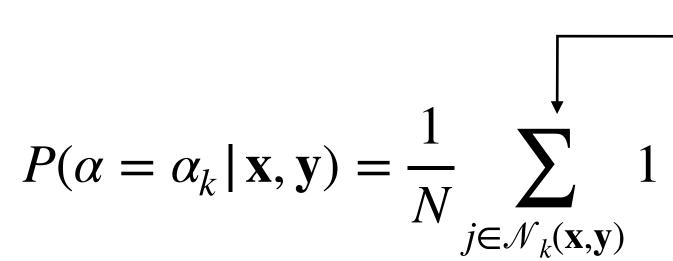
Just train a classifier to estimate posterior that an event with given \mathbf{x}, \mathbf{y} belongs to set j!

Treat each MC set as one discrete class

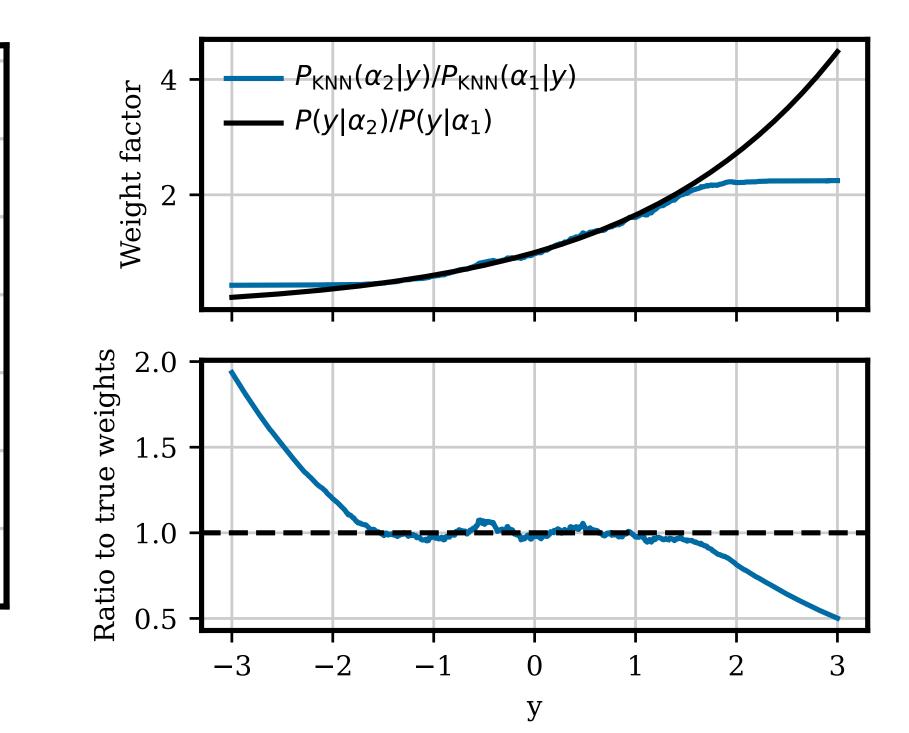
KNN Classifier Example Simple and Robust Posterior Estimate

KNN Classifier Equation:





Sum over indices in neighborhood around (\mathbf{x}, \mathbf{y}) belonging to set k



Making Event-Wise Gradients Interpolating between Discrete MC Sets

Probability estimate using softmax to normalize $\hat{P}(\alpha_k | \mathbf{x}_j, \mathbf{y}_j) = \operatorname{softmax}\left(\mathbf{g}_j A\right) = \frac{\exp(\sum_n g_{jn} A_{nk})}{\sum_{k'} \exp(\sum_{j'} g_{jn} A_{nk'})}$

 g_{in} = gradient w.r.t. α_n for event j

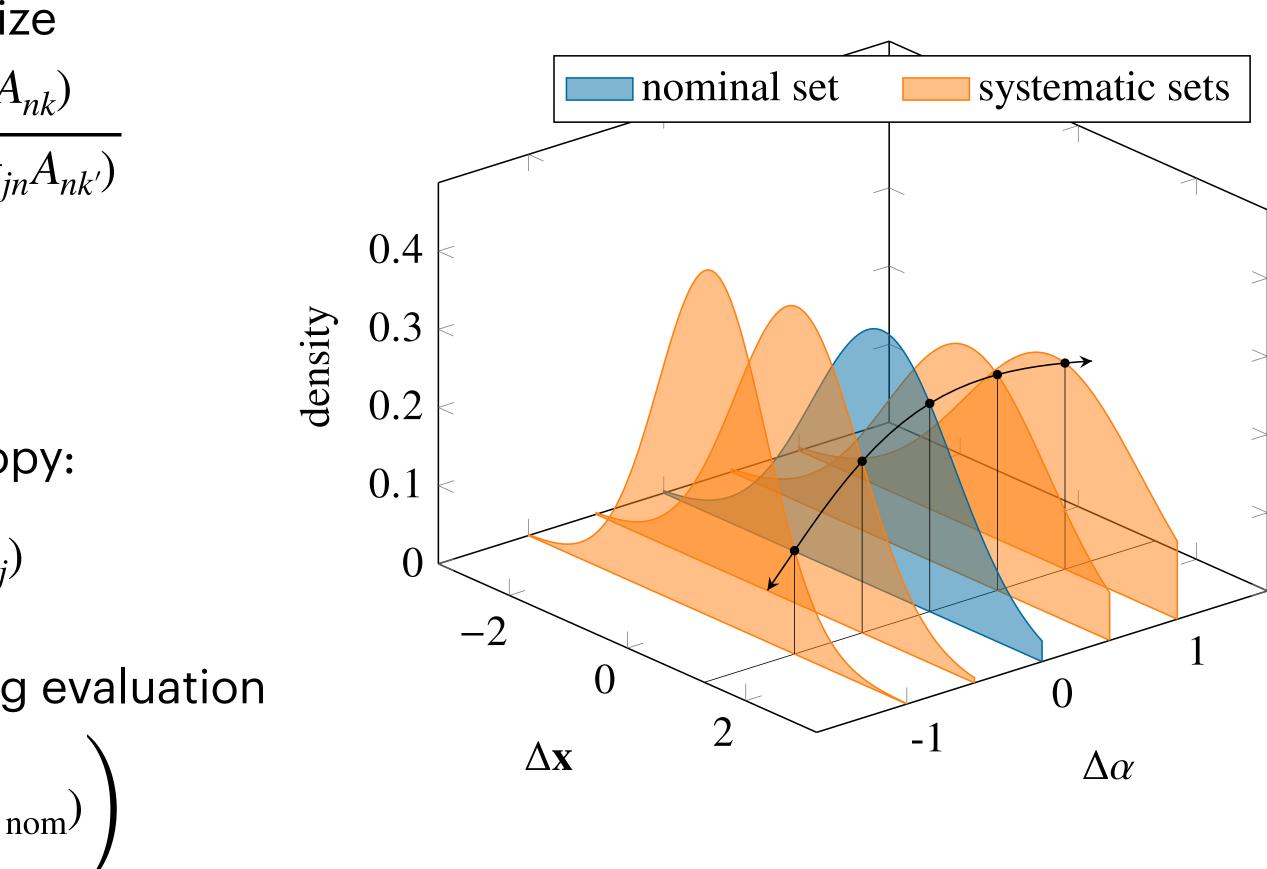
$$A_{nk} = \alpha_{n,k} - \alpha_{n,\text{ nom}}$$

• Loss function to fit gradients g_{jn} is cross-entropy:

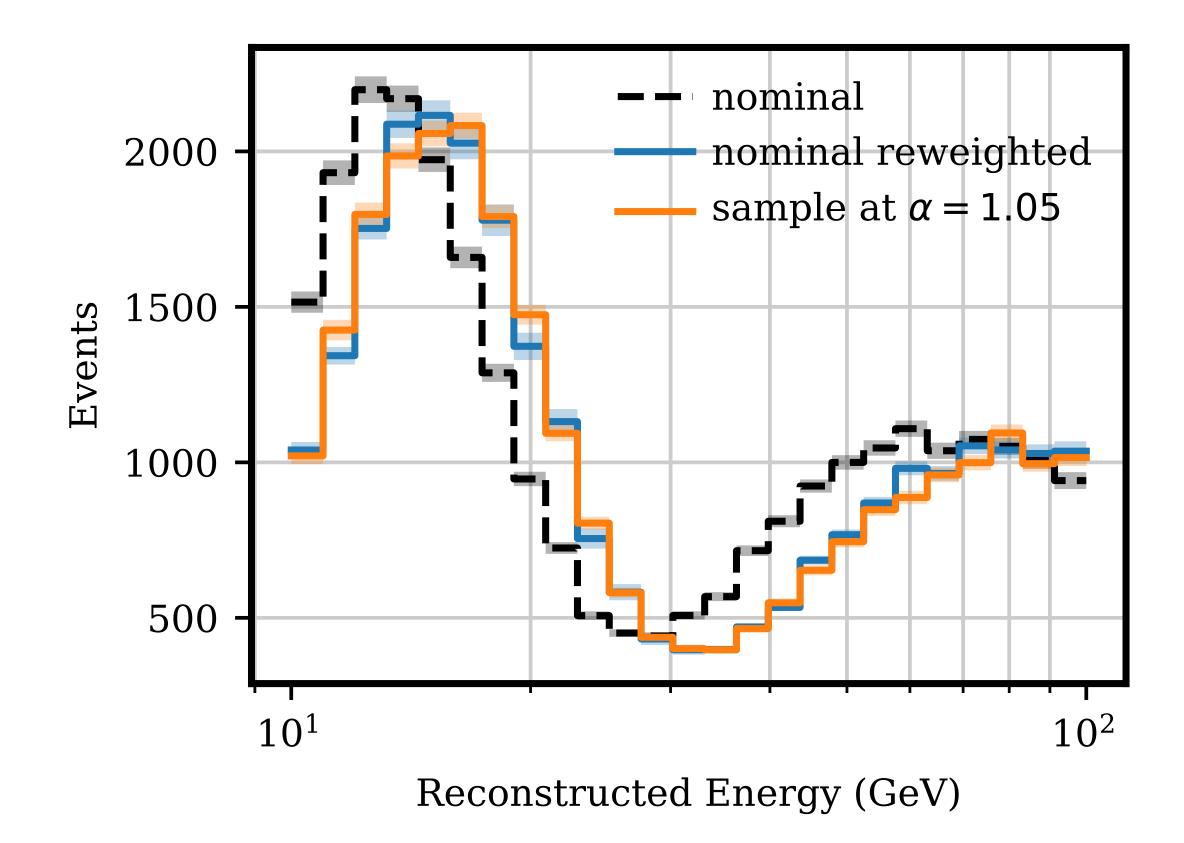
$$H_j = -\sum_k \log(\hat{P}(\alpha_k | \mathbf{x}_j, \mathbf{y}_j)) P_{\text{KNN}}(\alpha_k | \mathbf{x}_j, \mathbf{y}_j)$$

Interpolated weight for every MC event during evaluation

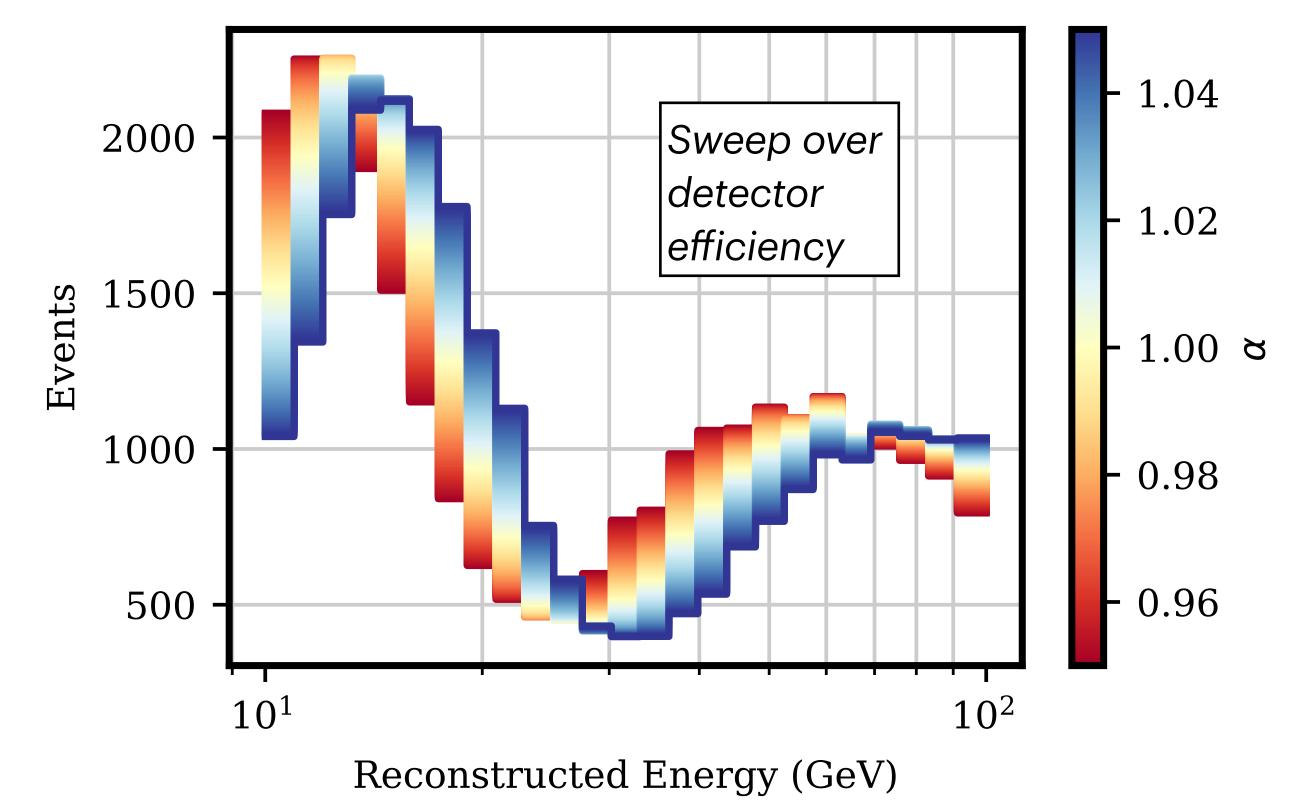
$$\hat{r}_{j}(\alpha) = \frac{\hat{P}(\alpha | \mathbf{x}_{j}, \mathbf{y}_{j})}{\hat{P}(\alpha_{\text{nom}} | \mathbf{x}_{j}, \mathbf{y}_{j})} = \exp\left(\sum_{n} g_{jn}(\alpha_{n} - \alpha_{n})\right)$$



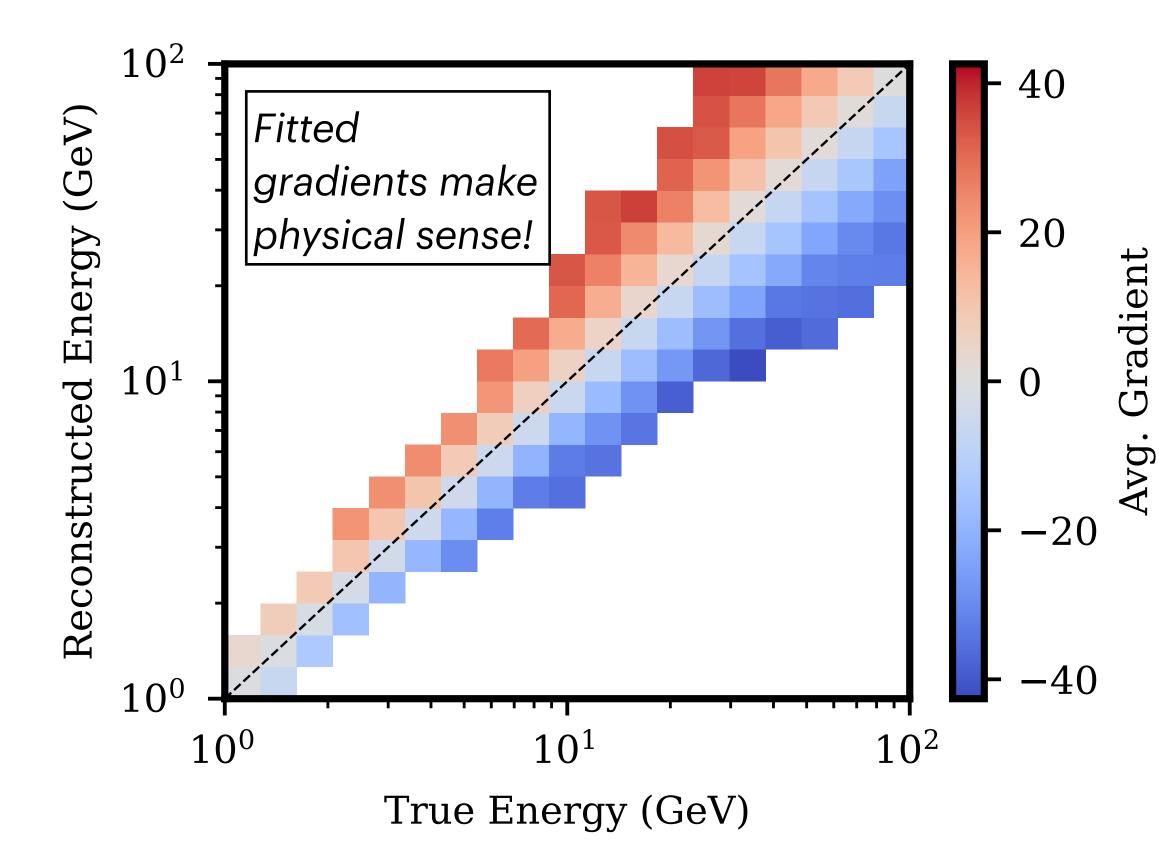
Toy MC Example Reweighting between and in between MC sets

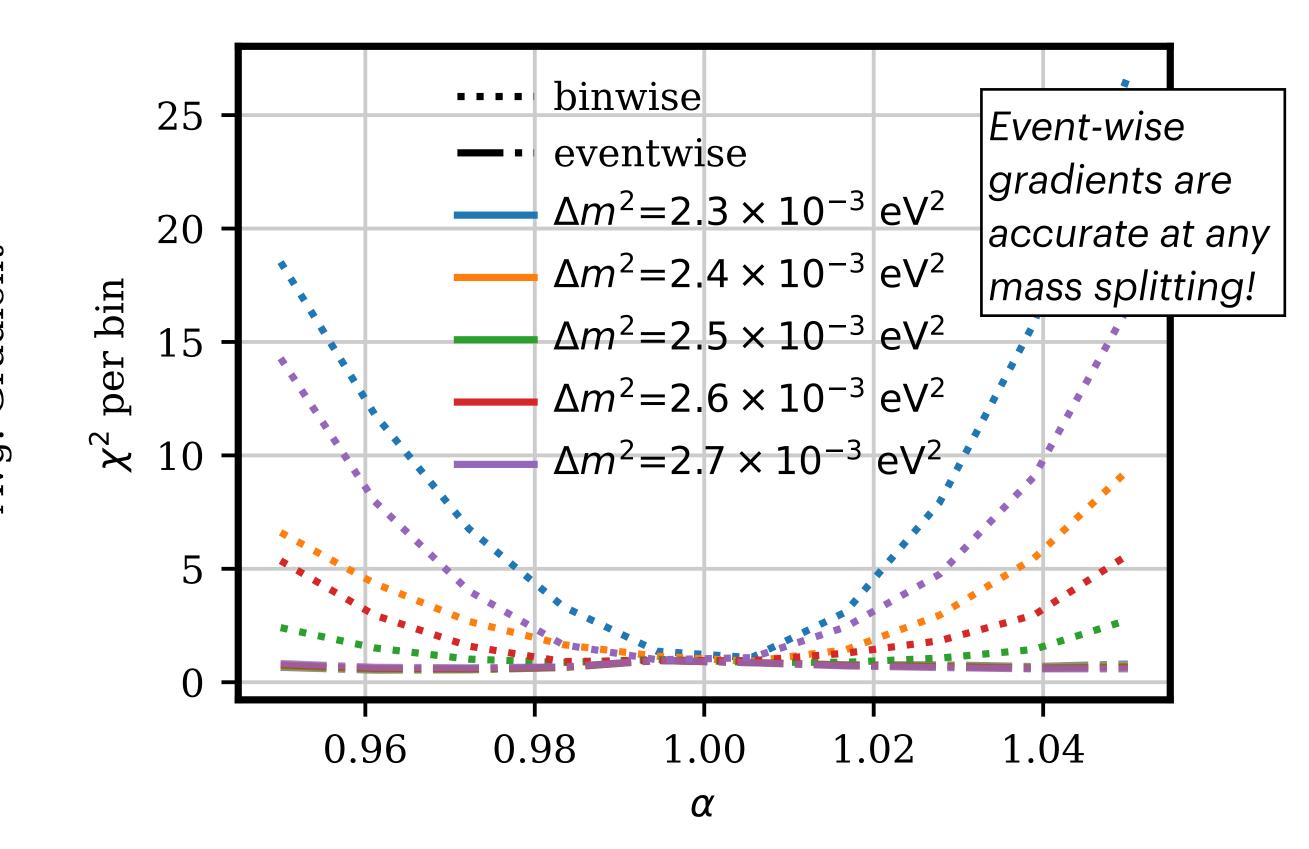


Note: The classifier was trained on the *unweighted* events!

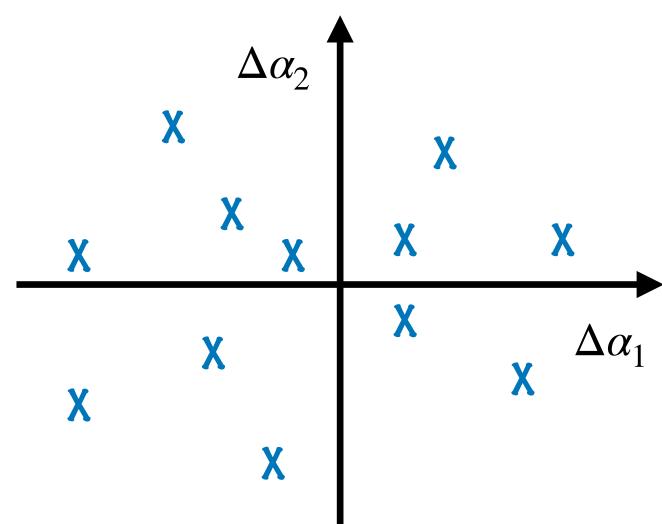


Performance on Toy MC Gradients make Sense and Produce Accurate Predictions

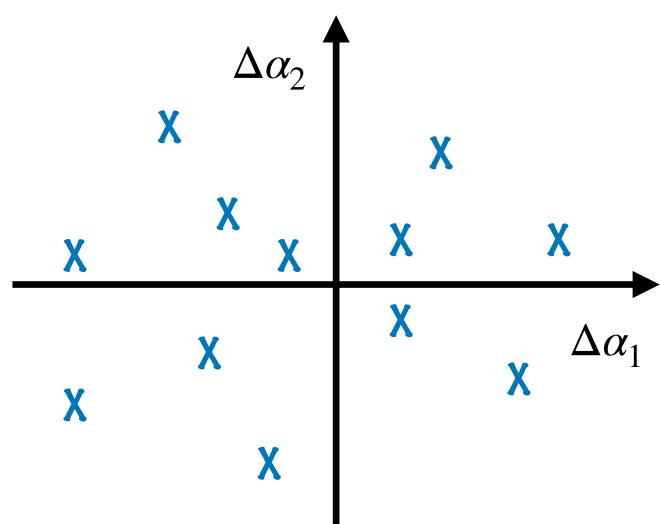




- Generate MC sets at various realizations of the detector 1.
 - Systematic sets can be much smaller than nominal set!

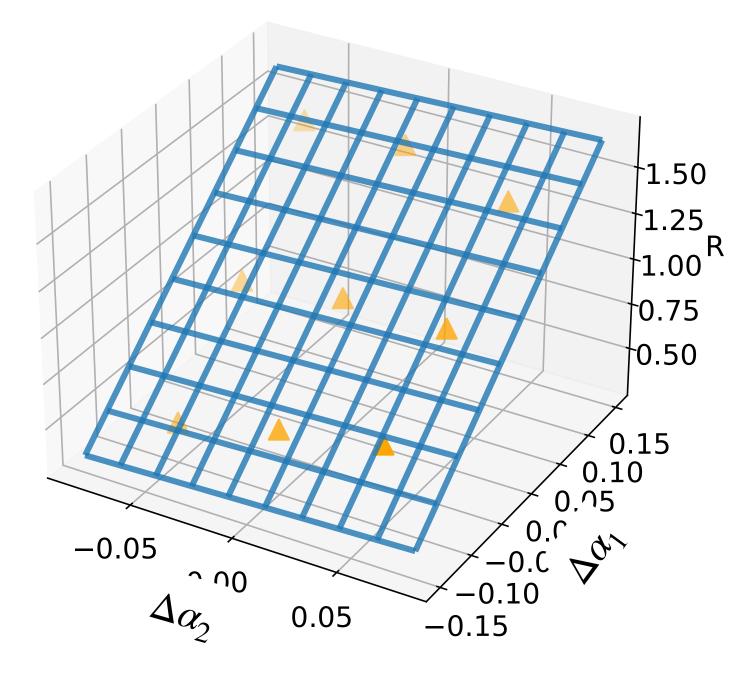


- Generate MC sets at various realizations of the detector
 - Systematic sets can be much smaller than nominal set!
- 2. Fit the classifier
 - Any classifier giving calibrated posteriors may be used

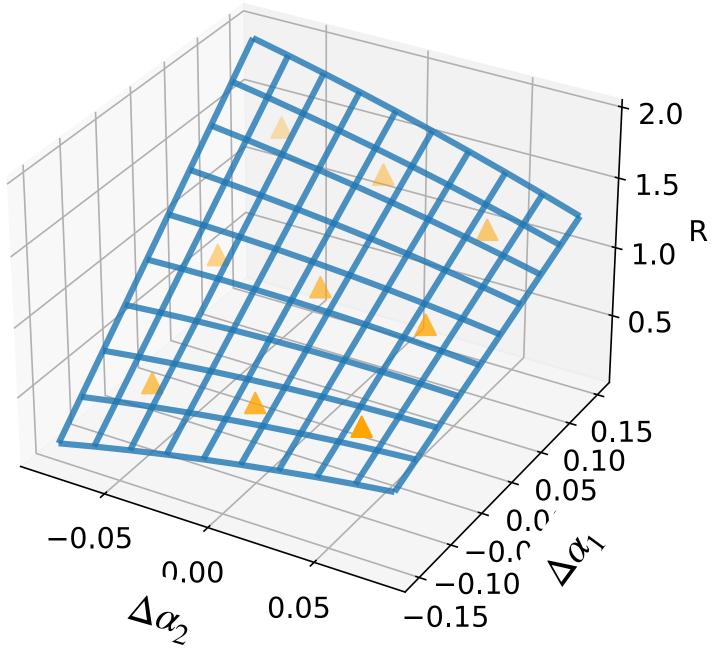


- 1. Generate MC sets at various realizations of the detector
 - Systematic sets can be much smaller than nominal set!
- 2. Fit the classifier
 - Any classifier giving calibrated posteriors may be used
- 3. Fit gradients for all nominal MC events
 - Polynomial features of parameters may be used

s of the detector than nominal set!

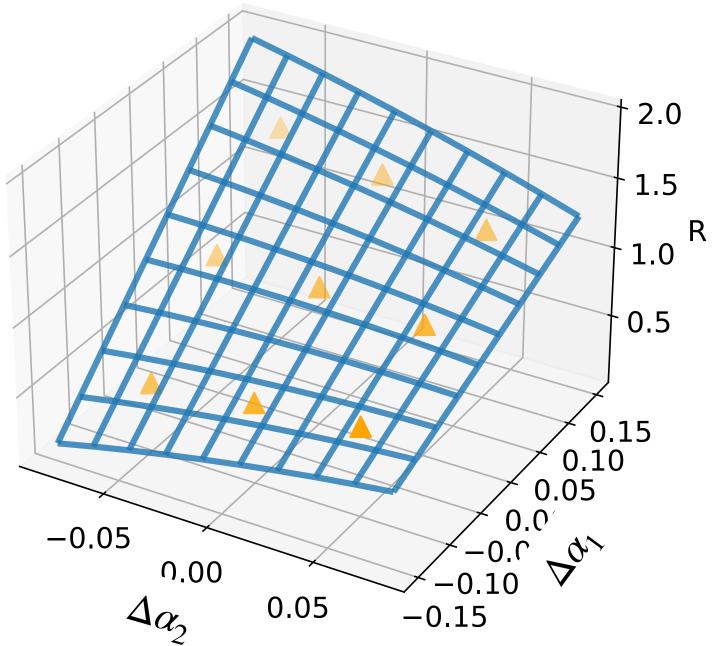


- 1. Generate MC sets at various realizations of the detector
 - Systematic sets can be much smaller than nominal set!
- 2. Fit the classifier
 - Any classifier giving calibrated posteriors may be used
- 3. Fit gradients for all nominal MC events
 - Polynomial features of parameters may be used



- Generate MC sets at various realizations of the detector
 - Systematic sets can be much smaller than nominal set!
- 2. Fit the classifier
 - Any classifier giving calibrated posteriors may be used
- 3. Fit gradients for all nominal MC events
 - Polynomial features of parameters may be used

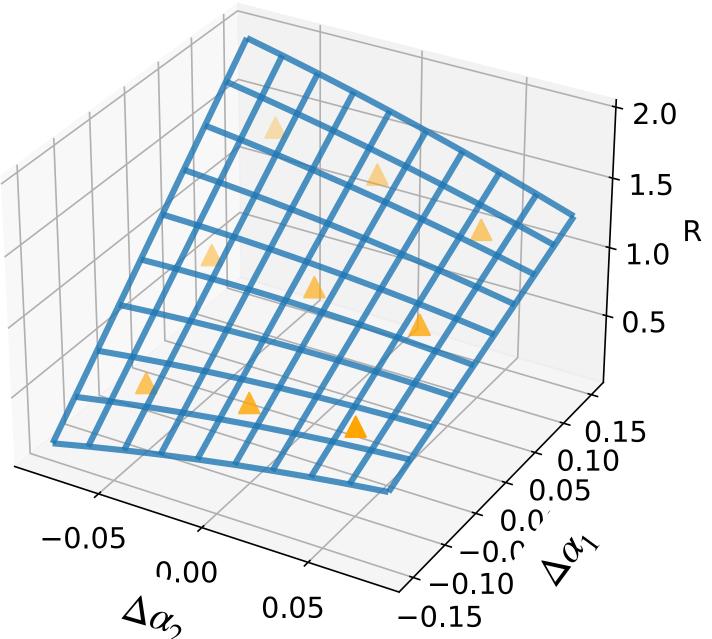
detector realization!



4. Weight your MC by $w_j = \exp\left(\sum_{n} g_{jn}(\alpha_n - \alpha_{n, \text{ nom}})\right)$ to get expectation values for any

- 1. Generate MC sets at various realizations of the detector • Systematic sets can be much smaller than nominal set! • Any classifier giving calibrated posteriors may be used
- 2. Fit the classifier
- 3. Fit gradients for all nominal MC events
 - Polynomial features of parameters may be used

4. Weight your MC by
$$w_j = \exp\left(\sum_n g_{jn}(\alpha_n - \alpha_{n, \text{ nom}})\right)$$
 to get expectation values for any detector realization!
Analyzers need only the last step!



decouple detector effects from other weights such as flux, oscillation

• Event-wise weights including true and reconstructed event properties can

- Event-wise weights including true and reconstructed event properties can decouple detector effects from other weights such as flux, oscillation
- Training a classifier to distinguish between systematic MC sets provides weights via likelihood-free inference trick

- Event-wise weights including true and reconstructed event properties can decouple detector effects from other weights such as flux, oscillation
- Training a classifier to distinguish between systematic MC sets provides weights via likelihood-free inference trick
- Can fit gradients for each MC event using a parametrization with the "softmax" function that interpolate between MC sets

- Event-wise weights including true and reconstructed event properties can decouple detector effects from other weights such as flux, oscillation
- Training a classifier to distinguish between systematic MC sets provides weights via likelihood-free inference trick
- Can fit gradients for each MC event using a parametrization with the "softmax" function that interpolate between MC sets
- Gradients allow for simple re-weighting of nominal MC to model any realization of the detector without requiring assumptions about linearity, fixed binning, etc.

- Event-wise weights including true and reconstructed event properties can decouple detector effects from other weights such as flux, oscillation
- Training a classifier to distinguish between systematic MC sets provides weights via likelihood-free inference trick
- Can fit gradients for each MC event using a parametrization with the "softmax" function that interpolate between MC sets
- Gradients allow for simple re-weighting of nominal MC to model any realization of the detector without requiring assumptions about linearity, fixed binning, etc.

Thank You!

MC Event Weighting How we get an expectation value in each bin

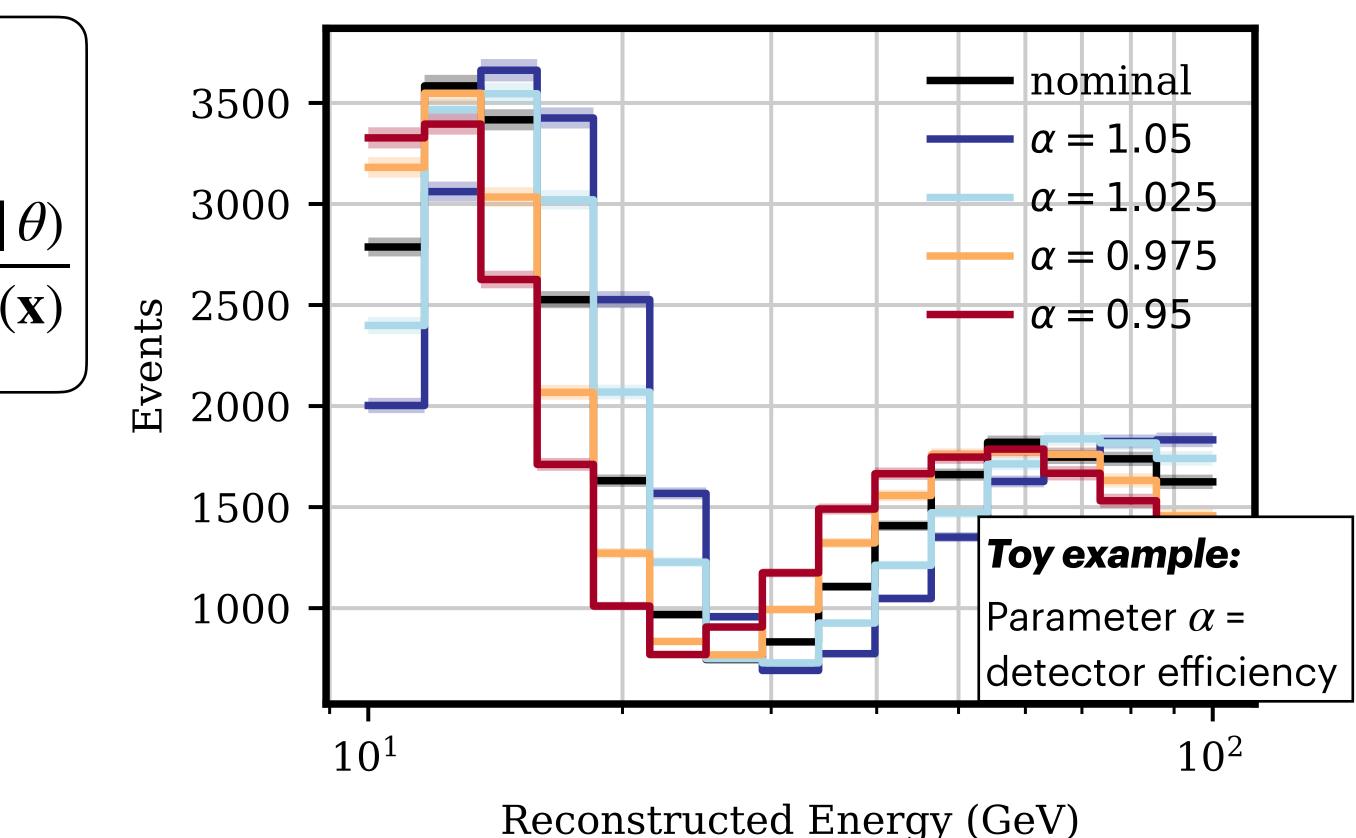
Full expression for expectation in each bin *i***:**

$$\mu_i(\theta) = \int_{\mathbf{y}\in\mathrm{bin}\,i} d\mathbf{y} \int d\mathbf{x} P(\mathbf{y} \,|\, \mathbf{x}, \alpha) P(\mathrm{acc} \,|\, \mathbf{x}, \alpha) \frac{\Phi(\mathbf{x} \,|\, \mathbf{x}, \alpha)}{\Phi_{\mathrm{sim}}(\mathbf{x}, \alpha)} \frac{\Phi(\mathbf{x} \,|\, \mathbf{x}, \alpha)}{\Phi_$$

- Flux, cross-sections, oscillations:
 - Estimate bin count by weighting events:

$$\hat{\mu}_i(\theta) = \sum_j I(\mathbf{y}_j \in \text{bin } i) \frac{\Phi(\mathbf{x}_j | \theta)}{\Phi_{\text{sim}}(\mathbf{x}_j)}$$

- **Uncertainties of detector properties:**
 - How can we get $P(\text{acc} | \mathbf{x}, \alpha) P(\mathbf{y} | \mathbf{x}, \alpha)$?



Goal of this Work Decoupling Detector Response Weight from Physics Parameters

- **Basic intuition:** Detector response should not depend on initial particle flux!
 - Detector reacts to final state of each particle, doesn't know about flux or cross-sections
 - Detector properties determine relationship between true and reconstructed variables
 - If we knew $P(\mathbf{y} \mid \mathbf{x}, \alpha) P(\text{acc} \mid \mathbf{x}, \alpha)$, we should be able to get the correct expectation value independently from θ

$$\hat{\mu}_{i}(\theta, \alpha) = \sum_{j} I(\mathbf{y}_{j} \in \text{bin } i) \frac{P(\mathbf{y}_{j} | \mathbf{x}_{j}, \alpha) P(\text{acc} | \mathbf{x}_{j}, \alpha)}{P(\mathbf{y}_{j} | \mathbf{x}_{j}, \alpha_{\text{nom}}) P(\text{acc} | \mathbf{x}_{j}, \alpha_{\text{nom}})} \frac{\Phi(\mathbf{x}_{j} | \theta)}{\Phi_{\text{sim}}(\mathbf{x}_{j})}$$

Event weight independent of θ

- Change your binning! Change your Physics! Gradients stay valid!
 - Caveat: Re-binning and selection changes may only use variables that were used as inputs into the classifier

- Change your binning! Change your Physics! Gradients stay valid!
 - Caveat: Re-binning and selection changes may only use variables that were used as inputs into the classifier
- ✓ Allow anyone to use detector effects by adding gradients to MC data-release

- Change your binning! Change your Physics! Gradients stay valid!
 - Caveat: Re-binning and selection changes may only use variables that were used as inputs into the classifier
- ✓ Allow anyone to use detector effects by adding gradients to MC data-release Automatically smooth over poor statistics in varied MC sets
- - Tune your classifier for the ideal balance of smoothness and over-fitting

- Change your binning! Change your Physics! Gradients stay valid!
 - Caveat: Re-binning and selection changes may only use variables that were used as inputs into the classifier
- ✓ Allow anyone to use detector effects by adding gradients to MC data-release Automatically smooth over poor statistics in varied MC sets
- Tune your classifier for the ideal balance of smoothness and over-fitting ✓ No assumption of linearity of detector effects

- Change your binning! Change your Physics! Gradients stay valid!
 - Caveat: Re-binning and selection changes may only use variables that were used as inputs into the classifier
- ✓ Allow anyone to use detector effects by adding gradients to MC data-release Automatically smooth over poor statistics in varied MC sets
- - Tune your classifier for the ideal balance of smoothness and over-fitting
- ✓ No assumption of linearity of detector effects
- ✓ No assumption about how you space out your MC sets

