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Introduction: Monte-Carlo Forward-Folding
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Produce MC 
 = true event properties 

(energy, direction, etc.)

Simulated flux:  (for 
example power law)

x

Φsim(x)

Detector Response 
 = reco. event properties

 = detector properties


 = acceptance

 = reconstruction

y
α
P(acc |x, α)
P(y |x, α)

Weight Events 



 = physics + nuisance 
parameters

w = Φ(x |θ)/Φsim(x)
θ

Toy example: 
weights include 
neutrino oscillations

Toy example: 
Reconstruction 
smears true energy


Δm2 = 2.55 × 10−3 eV2

sin2(2θ) = 0.98

This nomenclature will be used all throughout the talk!



Modeling of Detector Effects
Bin-wise weighting method
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Fit in One Bin

• Simplest method: Bin-wise gradients


• Problem: Depend on physics parameters θ

Toy example: 
Parameter  = 
detector efficiency

α



Bin-wise Weighting Methods
Implicit Marginalization
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Expectation value in bin :
i

μi(θ) = ∫y∈bin i
dy∫ dxP(y |x, α)P(acc |x, α)

Φ(x |θ)
Φsim(x)

PD
F

Energy

reconstructed
true

x

y



Bin-wise Weighting Methods
Gradients’ dependence on Physics Parameters
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Injected Δm2 = 2.76 × 10−3 eV2Injected Δm2 = 2.55 × 10−3 eV2

Gradient in one bin  requires 
integrating over true event properties 

∇α μi

Expectation value in bin :
i

μi(θ) = ∫y∈bin i
dy∫ dxP(y |x, α)P(acc |x, α)

Φ(x |θ)
Φsim(x)



Decoupling Detector Effects
Event Weights Should be Independent from Initial Flux
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Example:  = detector efficiency, α αnom = 1

PD
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Reconstructed Energy

P(y |x, α)P(acc |x, α)
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P(y |x, αnom)P(acc |x, αnom)

: Reconstructed energy tends 
to be smaller than true energy
α < 1

PD
F

Reconstructed Energy

P(y |x, α)P(acc |x, α)
P(y |x, αnom)P(acc |x, αnom)

: Reconstructed energy tends 
to be larger than true energy
α > 1

An event with 
 should 

get more weight
Ereco > Etrue

An event with 
 should 

get less weight
Ereco > Etrue



Decoupling Detector Effects
Event Weights Should be Independent from Initial Flux

6

Example:  = detector efficiency, α αnom = 1
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Reconstructed Energy

P(y |x, α)P(acc |x, α)
P(y |x, αnom)P(acc |x, αnom)

: Reconstructed energy tends 
to be larger than true energy
α > 1

An event with 
 should 

get more weight
Ereco > Etrue

An event with 
 should 

get less weight
Ereco > Etrue

But where do we get


  


from?

P(y |x, α)P(acc |x, α)
P(y |x, αnom)P(acc |x, αnom)



The Likelihood-free Inference Trick
Weighting from Nominal to Any Off-Nominal MC Set

Applying Bayes’ Theorem:


P(y |x, αk)P(acc |x, αk)
P(y |x, αnom)P(acc |x, αnom)

=
P(αk |x, y)

P(αnom |x, y)
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index  = index of MC setj

Just train a classifier to estimate posterior 
that an event with given  belongs to set !x, y j

Treat each MC set 
as one discrete class



KNN Classifier Example
Simple and Robust Posterior Estimate

KNN Classifier Equation:



P(α = αk |x, y) =
1
N ∑

j∈𝒩k(x,y)

1
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Sum over indices in neighborhood 
around  belonging to set (x, y) k



Making Event-Wise Gradients
Interpolating between Discrete MC Sets

• Probability estimate using softmax to normalize





 = gradient w.r.t.  for event  


 


• Loss function to fit gradients  is cross-entropy:





• Interpolated weight for every MC event during evaluation


̂P(αk |xj, yj) = softmax (gjA) =
exp(∑n gjnAnk)

∑k′￼
exp(∑n gjnAnk′￼)

gjn αn j

Ank = αn,k − αn, nom

gjn

Hj = − ∑
k

log( ̂P(αk |xj, yj))PKNN(αk |xj, yj)

̂rj(α) =
̂P(α |xj, yj)

̂P(αnom |xj, yj)
= exp (∑

n

gjn(αn − αn, nom))
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Toy MC Example
Reweighting between and in between MC sets
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Note: The classifier was trained on the unweighted events!

Sweep over 
detector 
efficiency



Performance on Toy MC
Gradients make Sense and Produce Accurate Predictions
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Event-wise 
gradients are 
accurate at any 
mass splitting!

Fitted 
gradients make 
physical sense!



Summary of the Procedure
How you can apply this in your analysis
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Summary of the Procedure
How you can apply this in your analysis

1. Generate MC sets at various realizations of the detector


• Systematic sets can be much smaller than nominal set!

12

Δα1

Δα2

XX

X X

X

X

X
X

X

X
X

X



Summary of the Procedure
How you can apply this in your analysis

1. Generate MC sets at various realizations of the detector


• Systematic sets can be much smaller than nominal set!

2. Fit the classifier


• Any classifier giving calibrated posteriors may be used

12

Δα1

Δα2

XX

X X

X

X

X
X

X

X
X

X



Summary of the Procedure
How you can apply this in your analysis

1. Generate MC sets at various realizations of the detector


• Systematic sets can be much smaller than nominal set!

2. Fit the classifier


• Any classifier giving calibrated posteriors may be used

3. Fit gradients for all nominal MC events


• Polynomial features of parameters may be used

12

Δα1

Δα2

XX

X X

X

X

X
X

X

X
X

X

Δα2

Δα 1



Summary of the Procedure
How you can apply this in your analysis

1. Generate MC sets at various realizations of the detector


• Systematic sets can be much smaller than nominal set!

2. Fit the classifier


• Any classifier giving calibrated posteriors may be used

3. Fit gradients for all nominal MC events


• Polynomial features of parameters may be used

12

Δα1

Δα2

XX

X X

X

X

X
X

X

X
X

X

Δα2

Δα 1



Summary of the Procedure
How you can apply this in your analysis

1. Generate MC sets at various realizations of the detector


• Systematic sets can be much smaller than nominal set!

2. Fit the classifier


• Any classifier giving calibrated posteriors may be used

3. Fit gradients for all nominal MC events


• Polynomial features of parameters may be used

4. Weight your MC by  to get expectation values for any 

detector realization!

wj = exp (∑
n

gjn(αn − αn, nom))

12

Δα1

Δα2

XX

X X

X

X

X
X

X

X
X

X

Δα2

Δα 1



Summary of the Procedure
How you can apply this in your analysis

1. Generate MC sets at various realizations of the detector


• Systematic sets can be much smaller than nominal set!

2. Fit the classifier


• Any classifier giving calibrated posteriors may be used

3. Fit gradients for all nominal MC events


• Polynomial features of parameters may be used

4. Weight your MC by  to get expectation values for any 

detector realization!

wj = exp (∑
n

gjn(αn − αn, nom))
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Analyzers need only the last step!
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• Event-wise weights including true and reconstructed event properties can 
decouple detector effects from other weights such as flux, oscillation
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Summary

• Event-wise weights including true and reconstructed event properties can 
decouple detector effects from other weights such as flux, oscillation

• Training a classifier to distinguish between systematic MC sets provides 
weights via likelihood-free inference trick

• Can fit gradients for each MC event using a parametrization with the “softmax” 
function that interpolate between MC sets

• Gradients allow for simple re-weighting of nominal MC to model any realization 
of the detector without requiring assumptions about linearity, fixed binning, 
etc.
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Thank You!



Backup



MC Event Weighting
How we get an expectation value in each bin

• Flux, cross-sections, oscillations:


• Estimate bin count by weighting events:


 


• Uncertainties of detector properties:


• How can we get ?

̂μi(θ) = ∑
j

I(yj ∈ bin i)
Φ(xj |θ)
Φsim(xj)

P(acc |x, α)P(y |x, α)
15

Full expression for expectation in each bin :
i

μi(θ) = ∫y∈bin i
dy∫ dxP(y |x, α)P(acc |x, α)

Φ(x |θ)
Φsim(x)

Toy example: 
Parameter  = 
detector efficiency

α



Goal of this Work
Decoupling Detector Response Weight from Physics Parameters

Basic intuition: Detector response should not depend on initial particle flux!


➡Detector reacts to final state of each particle, doesn’t know about flux or cross-sections


➡Detector properties determine relationship between true and reconstructed variables


➡ If we knew , we should be able to get the correct expectation value 
independently from 

P(y |x, α)P(acc |x, α)
θ

16

̂μi(θ, α) = ∑
j

I(yj ∈ bin i)
P(yj |xj, α)P(acc |xj, α)

P(yj |xj, αnom)P(acc |xj, αnom)
Φ(xj |θ)
Φsim(xj)

Event weight independent of θ



Benefits of our Method
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used as inputs into the classifier
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Benefits of our Method

✓ Change your binning! Change your Physics! Gradients stay valid! 


➡ Caveat: Re-binning and selection changes may only use variables that were 
used as inputs into the classifier

✓ Allow anyone to use detector effects by adding gradients to MC data-release

✓ Automatically smooth over poor statistics in varied MC sets


➡ Tune your classifier for the ideal balance of smoothness and over-fitting

✓ No assumption of linearity of detector effects

✓ No assumption about how you space out your MC sets
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