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Machine learning (ML) assistance

Neural networks learn to approximate the likelihood ratio when trained to 
distinguish between the two datasets

(or something monotonically related to it in some known way)

This transforms the problem from density estimation (which is hard) to 
classification (which is easy less hard)

Neural nets are naturally unbinned and are well suited to high-dimensional datasets

Note: that other classifiers could be used for this, such as a boosted decision tree

Explained in detail in this paper: A. Andreassen, B. Nachman, PRD RC 101 (2020) 
091901, arxiv:1907.08209
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.091901
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.091901
https://arxiv.org/abs/1907.08209


Omnifold concept: ML reweighting

Train a fully connected neural network to classify between two datasets A & B:

Using the weighted cross-entropy loss where each event x has a weight w and a 
true label p gets a prediction q

The predictions from the network q then approximate the ratio of the two datasets 
and can be used to reweight from one to the other:

In practice this uses real (or fake) data and the MC prediction as inputs to the 
network → this talk uses a public T2K MC dataset as input to Omnifold

3Omnifold paper: A. Andreassen, P. Komiske, E. Metodiev, B. Nachman, J. Thaler, PRL 124 (2020) 182001 Ben’s NuXtract Talk

https://doi.org/10.1103/PhysRevLett.124.182001
https://indico.cern.ch/event/1302529/contributions/5589832/attachments/2725952/4737566/NuXTract2023.pdf


T2K CC0pi event selection

CC0pi signal definition (neutrino mode): one negatively charged muon, zero 
pions, and any number of hadrons detected in the final state where the vertex was 
reconstructed in the FGD1 fiducial volume.

Signal samples are categorized by the (sub-)detectors used in the event, and the 
analysis includes several control samples to constrain background events.

Events in the data set are characterized by muon (proton) kinematics, and also 
include weights for detector, flux, and cross-section systematic throws.

θ
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Corresponding paper:
https://doi.org/10.1103/PhysRevD.101.112001

(see also: https://arxiv.org/abs/2303.14228 or 
https://doi.org/10.1103/PhysRevD.101.112004)

https://doi.org/10.1103/PhysRevD.101.112001
https://arxiv.org/abs/2303.14228
https://doi.org/10.1103/PhysRevD.101.112004


Inputs to Omnifold

Omnifold uses the muon kinematics and proton kinematics (if present) for each 
event parameterized as (log(|p|), cos(θ), φ)

Approx. 200k reconstructed events and 600k truth events

Kinematics are normalized by centering to zero mean and unit standard deviation, 
and the log of momentum is used

Additionally the sample ID is included as input to the network, but is only used in 
Step 1 reweighting MC to data → fit both signal and control samples

Some of the background events (e.g. neutral current events) are removed before 
unfolding due to missing information needed for Omnifold
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Omnifold network details

Network architecture (for both Step 1 and 2) is based 
on two densely connected hidden layers of 100 
nodes each with ReLU activation

Single node output layer with sigmoid activation → 
produce classifier score

Event sample split 75/25 for training and validation 
respectively

Powered by TensorFlow and (optional) GPU 
acceleration
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Omnifold procedure

Omnifold is an iterative unfolding procedure 
performed in two steps:

1. Reweight reconstructed MC distribution 
to (better) match data

2. Reweight nominal truth MC distribution 
to incorporate information from step 1 

This is one iteration, and the method 
repeats until some convergence criteria is 
satisfied (or iteration limit is reached)
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Reconstructed Truth



First Iteration – Step 1
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First Iteration – Step 2
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Second Iteration – Step 1
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Uncertainty, efficiency, and ensembling

Omnifold naturally includes the efficiency correction when performing the unfolding 
(however this could be separated out and done as another step)

Systematic uncertainty is evaluated through a “universe” (toy throw) method where 
100 different systematic variations are processed by Omnifold, and the spread in 
results gives an uncertainty band

Statistical uncertainty is evaluated by varying the event weights following a 
Gaussian distribution → N(w, sqrt(w))

The inherent randomness of training neural networks is mitigated by ensembling 
using the average result of many trials
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Testing Omnifold

Omnifold (and iterative bayesian unfolding) 
were tested using a fake data study with 
weights applied to the nominal MC

Weights were derived from the ratio of NuWro 
to NEUT in transverse momentum imbalance

Note that shape-only weights were used, 
normalization remains the same
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Event rate after unfolding with Omnifold 
compared to the fake data truth

The uncertainty (gray boxes) is evaluated 
using 100 sys./stat. throws

Binned in 2D muon kinematics (p, cosθ) 
but as a flattened 1D array for plotting 
purposes

Unfolded Results: Omnifold
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Unfolded Results

Since omnifold is done in the 
unbinned full phase space, 
variables which is not trained 
explicitly can be unfolded.

e.g. Transverse kinematic imbalance

It is important to investigate hadrons
to understand the nuclear effect.
It is featured by three variables 

- Missing momentum : (δpT, δαT)
- Angle between proton and muon : δφT
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Unfolded Results: Omnifold

Transverse kinematic imbalance

15

・δpT

・δαT

・δφT



Performance and convergence

We evaluate performance using a 
chi-squared metric comparing against 
the truth-level distributions of our “data”

   (p : unfolded MC ; q : fake data)

This also gives a look at how the 
unfolding converges with more 
iterations

Note that this is just one method to 
define convergence
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Comparison with a conventional method

Comparing to a conventional method (Iterative Bayesian Unfolding / D’Agostini)
The performance of Omnifold is comparable (or better) with that of IBU.
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Comparison with a conventional method
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Variable No Unfolding 𝛘2
 / dof IBU 𝛘2

 / dof Omnifold 𝛘2
 / dof

2D Muon (p, cos 𝜭) 37.7 / 58 22.9 / 58 21.1 / 58

Muon pz 5.8 / 12 4.9 / 12 1.9 / 12

ẟpT 74.7 / 14 8.6 / 14 19.3 / 14

ẟ𝛂T 13.6 / 18 4.1 / 18 3.8 / 18

ẟ𝝓T  46.7 / 14 11.4 / 14 9.7 / 14



Cross section: calculation

Using the number of events, differential cross section with kinematic variables xi 
is calculated by:

NB: Number of signal events calculated using the weights from Omnifold and 
includes efficiency correction
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Ni : The number of signal events

Φ :  Integrated neutrino beam flux

T : The number of targets (nucleon)

Δwi : Bin width correction



Cross section: Omnifold 
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Differential cross section with 2D muon 
kinematics (again as flattened 1D array)

Very preliminary result and some 
uncertainties are not considered fully

Uncertainty from the total 
flux integral and number of 
targets not included here



Summary & future work

Omnifold is an unbinned unfolding method utilizing machine learning that naturally 
work with high dimensionality

Preliminary results using a public T2K data set look promising as an application for 
neutrino cross-section measurements

We are studying additional fake data studies to further test the performance of 
Omnifold and compare to IBU

Working on more methods to test convergence, evaluate the various sources of 
systematic uncertainty, and (as always) fixing various bugs that emerge
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Backup slides
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T2K near detector: ND280

Off-axis detector (2.5 degrees, 0.6 GeV flux peak)

Fine Grained Detectors (FGDs)
● Plastic scintillator tracker
● FGD1 & 2 active carbon (CH) neutrino-interaction target
● FGD2 passive water neutrino-interaction target layers

Time Projection Chambers (TPCs)

● Tracking detectors
● Charged particle momentum
● Particle identification

Highly capable tracking detector with multiple targets. Very 
good at measuring forward going particles, however is less 
efficient at high angles.

BEAM

BEAM
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Measure selected number of events in a reconstructed variable -- what the 
detector saw.

Want the total number of signal events in a true variable -- what physically 
happened.

Assuming no background: 

Unfolding is finding the unsmearing matrix U given the smearing matrix S and 
removing the detector effects from the measured data (R in j bins) to get the “true” 
distribution (T in i bins)

Simplest method would be to invert S, but this is usually regarded as a bad move

Measurements and Unfolding

Efficiency Background Unfolding
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Unbinned Reweighting

Given two datasets (where one or both 
could be MC) where:

● Dataset 1 → sampled from p(x)
● Dataset 2 → sampled from q(x)
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Create or calculate weights w(x) = q(x) / p(x) such that if the weights are applied to 
dataset 1, it is statistically identical to dataset 2

How do we calculate the weights if we do not know (or can not easily calculate) p(x) 
and q(x) – and without estimating them by binning?



Iterative Bayesian Unfolding

Also known as D’Agonstini unfolding

Iterative procedure for unfolding (for more 
details refer to https://arxiv.org/abs/1010.0632)

Converges to matrix inversion and/or maximum 
likelihood as it approaches infinite iterations

Onmifold when binned is equivalent to IBU
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From Lukas’s slides (Thanks Lukas!)

https://arxiv.org/abs/1010.0632
https://indico.cern.ch/event/1302529/contributions/5594148/attachments/2724920/4735391/Stat_Methods.pdf

