Meas. K⁺-Ar Total Inelastic Cross Section at ProtoDUNE-SP

Richie Diurba (Bern) for the DUNE Collaboration NuXTract 2023 A Brief Introduction to ProtoDUNE-SP was Presented on Monday

Meas. K⁺-Ar Total Inelastic Cross Section at ProtoDUNE-SP

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

Hadron Beam Taken at ProtoDUNE-SP DUNE:ProtoDUNE-SP Beam Line Data (1-7 GeV/c)

- Uses a tertiary hadron beam from CERN SPS (Phys. Rev. Accel. Beams 22, 061003).
- Beamline instrumentation provides tracking, PID, ٠ and momentum measurements (JINST 15 P12004).
- Beamline instrumentation tracking cross-checks • tracking of Pandora-reconstructed beam candidate (EPJC 83 618).

Raw Data Event Displays from ProtoDUNE-SP

- LAr TPCs allow for event displays with near-continuous • signals.
- Beamline provides particles one-at-a-time with a trigger, ٠ allowing for consistent identification of beamline hadrons.

Meas. K⁺-Ar Total Inelastic Cross Section at ProtoDUNE-SP

10

DUNE: ProtoDUNE-SP Run 5772 Event 15132

5000

4750

· ⁴⁵⁰⁰ ∺ ₄₂₅₀

4000

π beam

ProtoDUNE-SP Hadron Cross Sections in a Time Projection Chamber

 All analyses use some version of the thin-slice equation pioneered by LArIAT (<u>Phys. Rev. D 106</u>, 052009):

$$N_{\rm inc.} - N_{\rm int.} = N_{\rm inc.} \exp\left(-\sigma r_{\rm trk.pitch} n\right) = N_{\rm inc.} \exp\left(-\frac{\sigma \rho_{\rm Ar} r_{\rm trk.pitch} N_{\rm avo.}}{M_{\rm Ar}}\right)$$

$$\sigma \left(\mathrm{KE} \right) = \frac{\mathrm{M}_{\mathrm{Ar}}}{\mathrm{N}_{\mathrm{avo.}} \mathrm{r} \rho} \mathrm{ln} \left[\frac{\mathrm{N}_{\mathrm{inc.}} (\mathrm{KE})}{\mathrm{N}_{\mathrm{inc.}} (\mathrm{KE}) - \mathrm{N}_{\mathrm{int.}} (\mathrm{KE})} \right]$$

• Example:

 $\circ~$ A kaon travels from slice 0 to slice j at KE of T_o and then interacts:

• Let's say we select N kaons that travels J slices and then interact:

 $T(j) = T_o - \sum_{i=0}^{j} \frac{dE_i}{dx_i} \delta x_i = T_o - \sum_{i=0}^{j} \Delta E_i$

$$N_{inc.}(KE) = \sum_{k=0}^{K} \sum_{i=0}^{j-1} N_{inc.}(KE) + \delta(KE - T_{ki})$$
$$N_{int.}(KE) = \sum_{k=0}^{K} N_{int.}(KE) + \delta(KE - T_{kj})$$

Interaction point (T_i)

Incident Slices (T_i for i slice)

Entry point (T_0)

Constants used:

- n: number density
- M_{Ar}: mass of argon nucleus
- N_{Avo.:} Avogadro's number
- r: pitch between wires
- ρ: liquid argon density

K+-Ar Measurements Total Inel. Cross Section

- K⁺ identified 6-7 GeV/c momenta settings.
- Presentation will focus on 7 GeV/c setting, but both settings are being analyzed.
- Event Selection:
 - 1. Beam must reach fiducial volume.
 - 2. Beamline information must "match" TPCreconstructed track.

For including a slice in the distributions:

3. Slice only contributes to incident or interacting histogram if within the fiducial volume.

(Right) Number of beamline candidates identified as kaons reported by beamline monitoring system

Momentum (GeV/c)	Kaon-like (k)
1	0
2	5.4
3	15.6
6	27.9
7	28.2
	\smile

Track length distribution of selected kaon beam tracks for the 7 GeV/c sample with interactions in the fiducial volume.

The "Simplest" Thing To Do

- Use **Bayes-like unfolding** to unfold ٠ the incident and interacting histograms separately using each wire as a "slice" of the detector.
 - Benefits: ٠
 - Like the corrections-based \cap method of LArIAT (Phys. *Rev. D* **106**, 052009)
 - Correct treatment of \cap particles that pass the fiducial volume and only provide incident slices.
 - Eff. and pur. corrections come with unfolding.
 - Negatives: •
 - Dependent on calorimetry for each wire slice.
 - Need to prove it is not model dependent

Reconstructed Kinetic Energy [MeV]

0.023

0.326

0.651

Reconstructed Kinetic Energy [MeV]

0.358

Response matrices normalized to 1 per row for the incident and interacting response matrices for the 7 GeV/c beam kaon candidates.

5520-6320

0.600

-0.2

-0.4

-0.6

-0.8

Meas. K⁺-Ar Total Inelastic Cross Section at ProtoDUNE-SP

Irue Kinetic Energy [MeV]

6320-7120

5520-6320

0.0

-0.2

-0.4

-0.6

-0.8

0.042

Results in Reconstruction Space

- At high energies, CERN beam has wide width that is almost 200 MeV wide.
- Studies showed that calorimetry had:
 - A 3% <u>calorimetry uncertainty</u> on dE/dx in the TPC.
 - A 1.2% beam momentum modeling uncertainty.

Unfolded Distributions

Cross section proportional to the division of N_{inc.} divided by the difference between N_{inc.}–N_{int.}

$$\begin{split} \mathrm{N_{inc.} - N_{int.} = N_{inc.}exp\left(-\sigma r_{\mathrm{trk.pitch}}n\right) = \mathrm{N_{inc.}exp}\left(-\frac{\sigma \rho_{\mathrm{Ar}} r_{\mathrm{trk.pitch}} \mathrm{N_{avo.}}}{\mathrm{M_{Ar}}}\right)}{\sigma\left(\mathrm{KE}\right) = \frac{\mathrm{M_{Ar}}}{\mathrm{N_{avo.}}r\rho} \mathrm{ln}\left[\frac{\mathrm{N_{inc.}(\mathrm{KE})}}{\mathrm{N_{inc.}(\mathrm{KE})} - \mathrm{N_{int.}(\mathrm{KE})}}\right]} \end{split}$$

Results

- Cross section has slight disagreement:
 - Chi-square:
 - Geant4: 4.47/2 bins
 - GENIE: 6.44/2 bins (v3.2 hA2018)

Conclusion

- K⁺- Ar cross section being measured with the traditional thin-slice formula and "simple" and unfolding.
 - Conceptually, a direct development of the thin-slice equation.
 - Requires careful counting of every single slice.
 - Must be model-independent
- ProtoDUNE-SP can measure hadron-Ar cross sections to measure a cross section as a function of energy.
- Will provide K⁺- Ar cross sections to help inform predictions for <u>DUNE's physics program</u>.

Measurement of the extracted cross section in data measured as a function of the true input cross section of the simulation using <u>Geant4RW</u> to alter the underlying simulation. Analysis used a 20% syst. uncertainty.