

Publishing Cross Sections at MINERvA

Noah Harvey Vaughan (they/them) PhD Candidate, Oregon State University NuXTract 2023 Wednesday October 6th, 2023

Outline

MINERvA Cross Sections

- Overview of MINERvA
- MC tuning
- Background constraint
- Unfolding testing and process

Noah Harvey Vaughan (they/them)

MINERvA Experiment

Noah Harvey Vaughan (they/them)

MINERvA Experiment

MINERvA Experiment

MINERvA = Main INjector ExpeRiment on v (nu) A (atom)

- Dedicated x-section experiment at FNAL
- Data runs from 2009 2019:
 - NuMI LE POT: $4.0\times 10^{20}~\nu$, $1.7\times 10^{20}~\bar{\nu}$
 - NuMI ME POT: ~ 3 × LE ν , ~7 × LE $\bar{\nu}$

Fe

Cross section publication history

- LE: 32 published; ME: 12 published, more in progress
- Processes studied:
 - QElike, π production, 2p2h
 - DIS
 - Coherent
- Comparison of targets

MINERVA

Noah Harvey Vaughan (they/them)

Cross section publication history

MINERvA Experiment

More difficult stuff too...

- 1.3 M events in first <u>3D</u> ν_{μ} CCQElike
- Highly exclusive (~5k events) Hydrogen x-sec

Extracting a Cross-section

Steps analyzers take for most cross-sections at MINERvA

Extraction process

Somewhat simplistically, analyzers start by:

- Choosing a process(es) they want to study (inclusively or exclusively)
- Creating a truth level signal definition of this process
- Choosing reconstruction cuts to select events in the data, reconstructed MC
- Cuts and sig def chosen to maintain compatibility with preexisting measurements

Extraction process

Cross Section Extraction

Somewhat simplistically, analyzers start by:

- Choosing a process(es) they want to study (inclusively or exclusively)
- Creating a truth level signal definition of this process
- Choosing reconstruction cuts to select events in the data, reconstructed MC
- Cuts and sig def chosen to maintain compatibility with preexisting measurements

For variable x in truth bins i with reconstruction bins α :

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}x}\right)_{i} = \frac{\sum_{\alpha} U_{i}^{\alpha} \left(N_{data,\alpha} - N_{data,\alpha}^{bkg}\right)}{\epsilon_{i} (\Phi T) (\Delta x_{i})}$$

Higher Dimensions

Cross Section Extraction

<u>2D</u>: For variables x, y, in truth bins i, j with reconstruction bins α, β :

$$\left(\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}x\,\mathrm{d}y}\right)_{ij} = \frac{\sum_{\alpha\beta} U_{ij}^{\alpha\beta} \left(N_{data,\,\alpha\beta} - N_{data,\,\alpha\beta}^{bkg}\right)}{\epsilon_{ij} (\Phi T) \left(\Delta x_{i} \Delta y_{j}\right)}$$

<u>3D</u>: For variables x, y, z in truth bins i, j, k with reconstruction bins α , β , γ :

$$\left(\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z}\right)_{ijk} = \frac{\sum_{\alpha\beta\gamma}U_{ijk}^{\alpha\beta\gamma}\left(N_{data,\,\alpha\beta\gamma} - N_{data,\,\alpha\beta\gamma}^{bkg}\right)}{\epsilon_{ijk}(\Phi T)\left(\Delta x_{i}\Delta y_{j}\Delta z_{k}\right)}$$

Cross Section Extraction

For variable x in truth bins i with reconstruction bins α :

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}x}\right)_{i} = \frac{\sum_{\alpha} U_{i}^{\alpha} \left(N_{data,\alpha} - N_{data,\alpha}^{bkg}\right)}{\epsilon_{i} (\Phi T) (\Delta x_{i})}$$

Background Subtraction

NuXTract 2023

Cross Section Extraction

For variable x in truth bins i with reconstruction bins α :

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}x}\right)_{i} = \frac{\sum_{\alpha} U_{i}^{\alpha} \left(N_{data,\alpha} - N_{data,\alpha}^{bkg}\right)}{\epsilon_{i} (\Phi T) (\Delta x_{i})}$$

Background Subtraction

Unfolding

NuXTract 2023

Cross Section Extraction

For variable x in truth bins i with reconstruction bins α :

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}x}\right)_{i} = \frac{\sum_{\alpha} U_{i}^{\alpha} \left(N_{data,\alpha} - N_{data,\alpha}^{bkg}\right)}{\epsilon_{i} (\Phi T) (\Delta x_{i})}$$

Background Subtraction Unfolding Efficiency & Acceptance Correction

Noah Harvey Vaughan (they/them)

NuXTract 2023

Cross Section Extraction

For variable x in truth bins i with reconstruction bins α :

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}x}\right)_{i} = \frac{\sum_{\alpha} U_{i}^{\alpha} \left(N_{data,\alpha} - N_{data,\alpha}^{bkg}\right)}{\epsilon_{i} (\Phi T) (\Delta x_{i})}$$

Background Subtraction Unfolding Efficiency & Acceptance Correction

Flux & Target Normalization

NuXTract 2023

Cross Section Extraction

For variable x in truth bins i with reconstruction bins α :

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}x}\right)_{i} = \frac{\sum_{\alpha} U_{i}^{\alpha} \left(N_{data,\alpha} - N_{data,\alpha}^{bkg}\right)}{\epsilon_{i} (\Phi T) (\Delta x_{i})}$$

Background Subtraction Unfolding Efficiency & Acceptance Correction Flux & Target Normalization Bin Width Normalization

Noah Harvey Vaughan (they/them)

NuXTract 2023

Cross Section Extraction

For variable x in truth bins i with reconstruction bins α :

$$\begin{pmatrix} d\sigma \\ dx \end{pmatrix}_{i} = \frac{\sum_{\alpha} U_{i}^{\alpha} (N_{data, \alpha} - N_{data, \alpha}^{bkg})}{\epsilon_{i} (\Phi T) (\Delta x_{i})}$$

Background Subtraction

Unfolding

Efficiency & Acceptance Correction Flux & Target Normalization Bin Width Normalization

Noah Harvey Vaughan (they/them)

NuXTract 2023

Note on MINERvA Systematics

Cross Section Extraction

MINERvA handles systematics through MnvHND's, inherited THND

- Central value universe: CVUniverse, stored as ROOT histogram
- *Systematic universes* (error bands): shifts and migrations on CVUniverse
- Typically, a $\pm 1\sigma$ shift on some parameter
- More detail on data preservation talk

No.

Noah Harvey Vaughan (they/them)

NuXTract 2023

Oregon State University 16

MINERvA Models and Tunes

Brief overview of empirical and physics tunes on MINERvA simulation

Noah Harvey Vaughan (they/them)

Making and using MnvTunes

MnvTune

MINERvA creates tunes on simulation from measurements

- Base simulation GENIE 2.12.6
- Theory/physics based if not included in generator
- Based off MINERvA measurements and other experiments

Using MnvTunes

- Applied as weights, event-by-event
- Analyzers choose appropriate tune for unfolding, analysis

A. Bashyal, Phys.Rev.D 108 (2023)

Noah Harvey Vaughan (they/them)

NuXTract 2023

Oregon State University 18

Constraining the Background

How analyzers constrain the background using the simulated sample

Noah Harvey Vaughan (they/them)

General idea

Selected data contaminated with background events

- Can use simulation (with *truth* info) to inform removal
- Directly subtracting MC background introduces model dependence
- Use data driven methods to constrain the background instead

A. Bashyal, Fermilab JETP, 10 March 2023

Noah Harvey Vaughan (they/them)

NuXTract 2023

Entries/bin

Background

Constraint

General idea

Selected data contaminated with background events

- Can use simulation (with *truth* info) to inform removal
- Directly subtracting MC background introduces model dependence
- Use data driven methods to constrain the background instead

Noah Harvey Vaughan (they/them)

NuXTract 2023

21

Background Constraint

Sidebands

General idea:

- 1. Choose a signal sample, sidebands that select for main backgrounds
- 2. Fit background distributions to data
- 3. Use fits to tune predicted backgrounds in signal sample

Most analyzers use this method, but fitting & tuning methods vary

D. Ruterbories, Phys.Rev.Lett. 129 (2022)

Background

Noah Harvey Vaughan (they/them)

NuXTract 2023

Sidebands

General idea:

Choose a signal sample, sidebands 1. that select for main backgrounds

Auon p_⊤ (Ge

- Fit background distributions to data 2.
- 3. Use fits to tune predicted backgrounds in signal sample

Most analyzers use this method, but fitting & tuning methods vary

Unfolding

How analyzers do unfolding in MINERvA using the D'Agostini method

Noah Harvey Vaughan (they/them)

Smearing in Reconstruction

Unfolding

Data is in reconstructed bins

- "Smearing" of events ⇒ measured different than *true* value
- Detector resolution and reco algorithms sources of smearing

Unsmear reconstructed data for detector-independent result

- Use simulation, has both *truth* and *reco* information
- Migration matrix describes smearing from truth → reconstruction

A. Bashyal, Fermilab JETP, 10 March 2023

D'Agostini Unfolding

A method of iterative "Bayesian" unfolding, outlined here and here

- Distributions unfolded binwise
- Regularized by number of iterations
- Multidimensional unfolding
- Implemented in RooUnfold

$$\lambda_{j}^{(k+1)} = \frac{\lambda_{j}^{(k)}}{\sum_{i=1}^{N} U_{ij}} \sum_{i=1}^{N} \frac{U_{ij} y_{i}}{\sum_{l=1}^{p} U_{il} \lambda_{l}^{(k)}}$$

- k is number of iterations
- $\lambda^{(0)}$ is initial truth distribution
- U is response
- y is smeared data

Noah Harvey Vaughan (they/them)

NuXTract 2023

D'Agostini Unfolding

Implementation in MINERvA:

- RooUnfold based, extended to UnfoldUtils to handle systematic universes
- Square migration matrices typical, but non-square possible and explored
- Unfolds each systematic universe individually
- Unfolding uncertainties calculated from central value universe

Unfolding

Noah Harvey Vaughan (they/them)

NuXTract 2023

Oregon State University 27

D'Agostini Unfolding

Unfolding

Unfolding Studies

Each analyzer does unfolding studies

- Check behavior of migration matrix
- Ensure full consideration of unfolding uncertainties, closure tests
- Optimize number of iterations

What can be changed to fix issues?

- Adjust binning to reduce correlation, off-diagonal migration matrix
- Introduce new systematics to parameterize some cause of smearing
- Try new physics models to better match data

NuXTract 2023

Unfolding

Migration Matrix 1D

Unfolding

Migration Matrix 2D

Unfolding

31

Noah Harvey Vaughan (they/them)

NuXTract 2023

Oregon State University

TransWarp for unfolding studies

Unfolding

Analyzers use "TransWarp" macro to test unfolding:

- 5 histograms as inputs:
 - Migration matrix
 - Reco & True MC
 - Reco & True fake data as specified number of <u>statistical</u> universes of random Poisson throws on MC

Using TransWarp

Unfolding

Conditions when filling:

- All hists data exposure equivalent, typically POT scaled
- Sometimes single model for all hists
- Sometimes different models for *fake data* and *migration matrix*

Often comparing an unfolded distribution to a true distribution

$$\chi^{2} = \sum_{\alpha\beta} (\hat{\lambda}^{(k)} - \lambda)_{\beta} V_{\beta\alpha}^{-1} (\hat{\lambda}^{(k)} - \lambda)_{\alpha}$$

- λ is true kinematic
- $\hat{\lambda}^{(k)}$ is unfolded kinematic after k iterations
- *V* is unfolding covariance matrix

.33

NuXTract 2023

Oregon State University

"Warping" to Determine N_{iter}

- 1. Options to fill *fake data*:
 - Different physics model than *migration matrix* (e.g., *MnvTune v1* vs v2)
 - Same model, weighted by some function from a data/MC ratio fit ("warp")
 - Same model, up- or down-scaling ("CV scaling")

"Warping" to Determine N_{iter}

Unfolding

- 1. Options to fill *fake data*:
 - Different physics model than *migration matrix* (e.g., *MnvTune v1* vs v2)
 - Same model, weighted by some function from a data/MC ratio fit ("warp")
 - Same model, up- or down-scaling ("CV scaling")

"Warping" to Determine N_{iter}

Unfolding

Continued...

- 2. Check χ^2 of unfolded fake data compared to true fake data vs. N_{iter}
 - All *statistical universes*, median, average
 - See minimum N_{iter} where χ^2 is minimized and stable

P. Rodrigues, PhySTAT 2019

Oregon State University

36

Noah Harvey Vaughan (they/them)

Closing

Noah Harvey Vaughan (they/them)

NuXTract 2023

Oregon State University

MINERvA Cross sections

MINERvA uses its dedicated design to extract many cross sections

- MINERvA produces results that help improve generators for the next generation of neutrino physics
 - *MnvTunes* inform how generators can improve to better match observation
- Analyzers expected to use methods that are well tested
 - Signal definition set as standards
 - Flexibility in constraining the background
 - Robust testing and implementation of D'Agostini unfolding

NuXTract 2023

Oregon State University

Closing

Acknowledgements

Fermilab

Noah Harvey Vaughan (they/them)

NuXTract 2023

Oregon State University

Common reconstruction cuts

Backup: Cross Section Extraction

Noah Harvey Vaughan (they/them)

Common reconstruction cuts

Backup: Cross Section Extraction

- Event vertex location, whether tracker or targets analysis
- Cuts on outgoing μ angle to ensure reconstruction in MINOS (momentum & helicity)

Common reconstruction cuts

Backup: Cross Section Extraction

- Event vertex location, whether tracker or targets analysis
- Cuts on outgoing μ angle to ensure reconstruction in MINOS (momentum & helicity)
- Final state particles/event topologies

Summary of MnvTune vX.Y.Z

X Description

- 1 Original tune: Valencia RPA on QE (RFG), reduce non-RES π , low-recoil fit from LE to Valencia 2p2h
- 2 Same as 1, w/ Stowell low- $Q_{QE}^2 \pi$ suppression
- 3 Same as 1, w/ SuSA 2p2h, enhanced Bodek-Ritchie tail in Valencia QE, 25 MeV removal on E_{avail} in π events w/ FS protons
- 4 Same as 1, w/ π bubble chamber fit, CCNormRes scaled 1.15, MaRES set to 0.9, full MaRES and CCNormRes correlations

Y	Description	Z	Description
1	Normalization on coherent π production based on E_π	1	π and proton elastic FSI bug fix
2	Normalization on coherent π production based on E_π and $ heta_\pi$		Tunes with a "0" or missing number indicate no tune from that list: e.g., <i>MnvTune v1, MnvTune v1.0.1</i>
3	Additional Low- $Q^2_{QE} \pi$ suppression, normalization on coherent π production based on E_π	Tu	
4	Replace dipole form of axial formfactor of QE with z-expansion from Meyer et al.	e.	
5	Replace OF RFG nuclear model with NuWro SF		

Other methods

Backup: Background Constraint

DATA

Published 2D CCQE-like $\overline{\nu_{\mu}}$:

- Fit modified signal sample
- Treat background holistically ("QElikenot")
- LE: Fit full *recoil* spectrum
- ME: Fit only in background rich, high *recoil* (>100 MeV) region

A. Bashyal, Fermilab JETP, 10 March 2023

44

Noah Harvey Vaughan (they/them)

NuXTract 2023

Oregon State University

Before fit

Closure tests

Backup: Unfolding

- 1. Fill fake data & migration matrix, using same model
- 2. Compare unfolded fake data to true fake data,
 - Ratio vs. N_{iter} for un-thrown *statistical universe*, should be 1
 - χ^2 vs. N_{iter} of all *statistical universes* & their average, should be stable

Additional Stat Uncertainty

Stat uncertainty for $N_{iter} > 1$ missing in some implementations

- Greatly underpredicts uncertainty without this
- Enhancement applied as scale, studies must be done to find scale factor
- Scale factor is typically similar between similar analyses

$$\frac{\partial \hat{n}(\mathbf{C}_{i})}{\partial n(\mathbf{E}_{j})} = M_{ij} + \sum_{k=1}^{n_{\mathbf{E}}} M_{ik} n(\mathbf{E}_{k}) \left(\frac{1}{n_{0}(\mathbf{C}_{i})} \frac{\partial n_{0}(\mathbf{C}_{i})}{\partial n(\mathbf{E}_{j})} - \sum_{l=1}^{n_{\mathbf{C}}} \frac{\epsilon_{l}}{n_{0}(\mathbf{C}_{l})} \frac{\partial n_{0}(\mathbf{C}_{l})}{\partial n(\mathbf{E}_{j})} M_{lk} \right)$$

T. Adye, arXiv:1105.1160 [physics.data-an]

Additional Stat Uncertainty

Stat uncertainty for $N_{iter} > 1$ missing in some implementations

- Greatly underpredicts uncertainty without this
- Enhancement applied as scale, studies must be done to find scale factor
- Scale factor is typically similar between similar analyses

Fig. 5: Bayesian unfolding errors (lines) compared to toy MC RMS (points) for 1, 2, 3, and 9 iterations on the Fig. 2 test. The left-hand plot shows the errors using D'Agostini's original method, ignoring any dependence on previous iterations (only the M_{ij} term in Eq. (3)). The right-hand plot shows the full error propagation.

T. Adye, arXiv:1105.1160 [physics.data-an]

Noah Harvey Vaughan (they/them)

NuXTract 2023

Oregon State University

Finding Stat Uncertainty Scale

Backup: Unfolding

Analyzers can use the TransWarp macro here too:

- 1. Fill *fake data* and *migration matrix* using a single model
- 2. Check average χ^2 vs. N_{iter} for different *MC sample sizes*
 - Typically, change scale in integer steps 1 10, inc. the normal data exposure POT scale
 - Check how far χ^2 lines for each MC scale gets to $\chi^2/_{ndf} = 1$

- 3. Determine and save uncertainty scale to bring average $\chi^2 = ndf$
- 4. Scale unfolding covariance & error using the *uncertainty scale*, and run closure test
 - Ratio of *unfolded fake data* to *true fake data* should be unchanged
 - χ^2 vs. N_{iter} of all *statistical universes* will shift down slightly, remain stable

Other things to look for

Other things to check to find issues (e.g., overly aggressive fake data)

- Migration matrices for *fake data*, the CV, ratios between migration matrices
- Warping weight vs. *true* & *reco* distributions
- True fake data, unfolded fake data statistical universes, average unfolded fake data
- Ratio of average unfolded fake data to true fake data

Upcoming results...

Quasielastic

- ν 3D transverse kinematic imbalance
- $\bar{\nu}$ 3D simultaneous leptonic & hadronic measurement
- $\nu/\bar{\nu}$ ratios
- Neutron tagging

Low hadronic recoil

- Interactions with 2+ neutrons
- $v_e \& \overline{v_e}$
- Charged π 's

Inelastic

- Several DIS results
- SIS results
- Interactions on Helium

50

Noah Harvey Vaughan (they/them)