Binned Log-Likelihood Template Parameter Fitting In Action Applied to a $\nu_e CC\pi^+$ ND280 Analysis

Nick Latham

NuXTract 2023, CERN

October 3, 2023

- Overview of template fitting as a cross section extraction technique.
- Example 'in action' applied to a $\nu_e CC$ pion production analysis at T2K.
- Exploration of diagnostics and validation.

- Overview of template fitting as a cross section extraction technique.
- Example 'in action' applied to a ν_e CC pion production analysis at T2K.
- Exploration of diagnostics and validation.
- This technique has been used for several recent T2K measurements; two of which have primary authors present at NuXTract:
- $\rightarrow \nu_{\mu}$ CC1 π^{+} using transverse kinematic imbalance, Phys. Rev. D **103**, 112009 (2021).
- \rightarrow ND280-INGRID joint ν_{μ} CC0 π , arXiv:2303.14228.
- $\rightarrow \nu_{\mu}(\bar{\nu}_{\mu})$ CC-COH pion production, arXiv:2308.16606.
- \rightarrow Complete list of publications in M. Buizza Avanzini's talk.

- Overview of template fitting as a cross section extraction technique.
- Example 'in action' applied to a ν_e CC pion production analysis at T2K.
- Exploration of diagnostics and validation.
- This technique has been used for several recent T2K measurements; two of which have primary authors present at NuXTract:
- $\rightarrow \nu_{\mu}$ CC1 π^{+} using transverse kinematic imbalance, Phys. Rev. D **103**, 112009 (2021).
- \rightarrow ND280-INGRID joint ν_{μ} CC0 π , arXiv:2303.14228.
- $\rightarrow \nu_{\mu}(\bar{\nu}_{\mu})$ CC-COH pion production, arXiv:2308.16606.
- \rightarrow Complete list of publications in M. Buizza Avanzini's talk.

Many more at late-stage, including the analysis discussed in this talk!

 \bullet We want to measure the cross section, σ

$$\left(\frac{d\sigma}{dx}\right)_{i} = \frac{\hat{N}_{i}^{\text{sig}}}{\epsilon_{i}\Phi N_{T}} \frac{1}{\Delta x_{i}},\tag{1}$$

where x is an input variable, ϵ is the efficiency, Φ is the flux and N_T is the number of targets.

 \bullet We want to measure the cross section, σ

$$\left(\frac{d\sigma}{dx}\right)_{i} = \frac{\hat{N}_{i}^{\text{sig}}}{\epsilon_{i}\Phi N_{T}} \frac{1}{\Delta x_{i}},\tag{1}$$

where x is an input variable, ϵ is the efficiency, Φ is the flux and N_T is the number of targets.

- The **selection** measures the number of signal events \hat{N}_i^{sig} which is distributable to a specific binning scheme Δx_i . This may be miscounted due to:
 - Detector smearing
 - Background events

 \bullet We want to measure the cross section, σ

$$\left(\frac{d\sigma}{dx}\right)_{i} = \frac{\hat{N}_{i}^{\text{sig}}}{\epsilon_{i}\Phi N_{T}} \frac{1}{\Delta x_{i}},\tag{1}$$

(2)

where x is an input variable, ϵ is the efficiency, Φ is the flux and N_T is the number of targets.

- The **selection** measures the number of signal events \hat{N}_i^{sig} which is distributable to a specific binning scheme Δx_i . This may be miscounted due to:
 - Detector smearing
 - Background events
- Number of events in true bin *i* and reconstructed bin *j*:

$$N_i^{ ext{true}} = \sum_j U_{ij} N_j^{ ext{reco}}, \quad N_j^{ ext{reco}} = \sum_i U_{ij}^{-1} N_i^{ ext{true}}.$$

• **Unfolding** is where we find U_{ij} by deconvolving resolution effects.

- Template fitting:
 - Assign normalisation weights, c_i , to each truth space bin
 - c_i are iteratively changed during the fitting process
 - Changes in c_i will increase or decrease N^{sig} in a true bin
 - Observe effects on reconstructed distributions

Template Fitting in Action

• Example applied to $\nu_e CC$ pion production analysis at ND280:

TPC π^+ signal sample

$FGD\pi^+$ signal sample

Signal definition:
$$u_e + \mathsf{C} \rightarrow e^- + \pi^+ + X$$

Only 355 events expected for runs 2-8, \sim 100 selected

• Example applied to $\nu_e CC$ pion production analysis at ND280:

 1 See talk on Thursday by **S**. Jenkins for exploration of higher dimensional efficiency corrections $_{6/21}$

(4)

• Template and nuisance parameters in expected event rate model:

$$N_{j}^{\exp} = \sum_{i}^{\operatorname{true}} \left[c_{i} \left(N_{i}^{\operatorname{MC, sig}} \prod_{a}^{\operatorname{model}} w\left(a, \vec{x}\right) \right) + \sum_{ik}^{\operatorname{bkg}} N_{ik}^{\operatorname{MC, bkg}} \prod_{a}^{\operatorname{model}} w\left(a, \vec{x}\right) \right] t_{ij} d_{j} \sum_{n}^{E_{\nu}} v_{in} f_{n}.$$
(3)

 c_i : template parameters $w(a, \vec{x})$: model systematics d_j : detector systematics $v_{in}f_n$: flux systematics • Template and nuisance parameters in expected event rate model:

$$N_{j}^{exp} = \sum_{i}^{true} \left[c_{i} \left(N_{i}^{MC, sig} \prod_{a}^{model} w(a, \vec{x}) \right) + \sum_{ik}^{bkg} N_{ik}^{MC, bkg} \prod_{a}^{model} w(a, \vec{x}) \right] t_{ij} d_{j} \sum_{n}^{E_{\nu}} v_{in} f_{n}.$$
(3)
$$c_{i} : template parameters
$$w(a, \vec{x}) : model systematicsd_{j} : detector systematicsv_{in} f_{n} : flux systematics$$
(4)$$

- Other terms: t_{ij} accounts for detector smearing effects, $N_{i,ik}^{MC, sig(bkg)}$ is the number of signal or background MC events, E_{ν} is neutrino energy.
- Parameters are iteratively changed to yield best data-MC agreement for reconstructed variables.

- *c_i*: template parameters
 - Each parameter corresponds to a true bin
 - Weights signal events only
- $w(a, \vec{x})$: model systematics
 - Typically 10-40 depending on backgrounds
 - Weights applied event-by-event using cubic splines
- *d_j*: detector systematics
 - Each parameter corresponds to a reco bin.
 - Normalisation weights
- $v_{in}f_n$: flux systematics
 - Between 7 and 50 depending on primary neutrino flavour(s)
 - Normalisation weights binned by E_{ν}

- *c_i*: template parameters
 - Each parameter corresponds to a true bin
 - Weights signal events only
- $w(a, \vec{x})$: model systematics
 - Typically 10-40 depending on backgrounds
 - Weights applied event-by-event using cubic splines
- *d_j*: detector systematics
 - Each parameter corresponds to a reco bin
 - Normalisation weights
- $v_{in}f_n$: flux systematics
 - Between 7 and 50 depending on primary neutrino flavour(s)
 - Normalisation weights binned by E_{ν}

- *c_i*: template parameters
 - Each parameter corresponds to a true bin
 - Weights signal events only
- $w(a, \vec{x})$: model systematics
 - Typically 10-40 depending on backgrounds
 - Weights applied event-by-event using cubic splines
- *d_j*: detector systematics
 - Each parameter corresponds to a reco bin.
 - Normalisation weights
- $v_{in}f_n$: flux systematics
 - Between 7 and 50 depending on primary neutrino flavour(s)
 - Normalisation weights binned by E_{ν}

• Four samples corresponding to two signal-enriched samples and their sidebands:

• Strongly analysis-dependent, ranges from one bin to hundreds.

- *c_i*: template parameters
 - Each parameter corresponds to a true bin
 - Weights signal events only
- $w(a, \vec{x})$: model systematics
 - Typically 10-40 depending on backgrounds
 - Weights applied event-by-event using cubic splines
- *d_j*: detector systematics
 - Each parameter corresponds to a reco bin.
 - Normalisation weights
- $v_{in}f_n$: flux systematics
 - Between 7 and 50 depending on primary neutrino flavour(s)
 - Normalisation weights binned by $E_{
 u}$

- Template parameters have no prior uncertainty \rightarrow free to alter.
- Nuisance parameters constrained with control samples.

Samples

• Note the physics for the control sample may not perfectly match the backgrounds in the signal sample.

• The fitting process minimises the **total chi-square** to yield the best fit parameters:

$$\chi^2 = \chi^2_{\text{stat}} + \chi^2_{\text{syst}} = -2 \ln \mathcal{L}_{\text{stat}} - 2 \ln \mathcal{L}_{\text{syst}}$$
(5)

²F. James and M. Winkler. *Minuit 2*. CERN, 2018. https://root.cern.ch/guidesminuit2-manual.

^{13 / 21}

• The fitting process minimises the **total chi-square** to yield the best fit parameters:

$$\chi^2 = \chi^2_{\text{stat}} + \chi^2_{\text{syst}} = -2 \ln \mathcal{L}_{\text{stat}} - 2 \ln \mathcal{L}_{\text{syst}}$$
(5)

Fit Metrics

• The Poissonian likelihood encapsulates the data-MC agreement:

$$-2\ln\mathcal{L}_{\text{stat}} = \chi_{\text{stat}}^2 = \sum_j^{\text{bins}} 2\left(\beta_j N_j^{\text{exp}} - N_j^{\text{obs}} + N_j^{\text{obs}} \ln\frac{N_j^{\text{obs}}}{\beta_j N_j^{\text{exp}}} + \frac{(\beta_j - 1)^2}{2\sigma_j^2}\right),\tag{6}$$

where β_i is the Beeston-Barlow scaling factor.

²F. James and M. Winkler. *Minuit 2*. CERN, 2018. https://root.cern.ch/guidesminuit2-manual.

^{13 / 21}

• The fitting process minimises the **total chi-square** to yield the best fit parameters:

$$\chi^2 = \chi^2_{\text{stat}} + \chi^2_{\text{syst}} = -2 \ln \mathcal{L}_{\text{stat}} - 2 \ln \mathcal{L}_{\text{syst}}$$
(5)

Fit Metrics

• The Poissonian likelihood encapsulates the data-MC agreement:

$$-2\ln\mathcal{L}_{\text{stat}} = \chi_{\text{stat}}^2 = \sum_j^{\text{bins}} 2\left(\beta_j N_j^{\text{exp}} - N_j^{\text{obs}} + N_j^{\text{obs}} \ln\frac{N_j^{\text{obs}}}{\beta_j N_j^{\text{exp}}} + \frac{(\beta_j - 1)^2}{2\sigma_j^2}\right),\tag{6}$$

where β_j is the Beeston-Barlow scaling factor.

• Systematic penalty terms are incurred for moving systematic parameters away from their nominal values:

$$-2\ln \mathcal{L}_{\text{syst}} = \chi_{\text{syst}}^2 = \sum_{p} \left(\vec{p} - \vec{p}_{\text{prior}} \right) \left(V_{\text{cor}}^{\text{syst}} \right)^{-1} \left(\vec{p} - \vec{p}_{\text{prior}} \right), \tag{7}$$

• Minimisation of total chi-square performed using Minuit2².

²F. James and M. Winkler. *Minuit 2*. CERN, 2018. https://root.cern.ch/guidesminuit2-manual.

13 / 21

• We systematically check the fitter outputs for a wide range of pseudo data studies:

Name	Notes
Asimov	Data is the nominal MC
Stat. & syst. fluctuations	Fit and XSec χ^2 coverage checked
Enhanced signal	All signal events re-weighted by $+20\%$
Enhanced DIS	All DIS events re-weighted by $+20\%$
Enhanced flux	All events re-weighted by $+20\%$
Alternate event generator	GENIE MC sample used as data
Low Q ² SPP suppression	${ m CC1}\pi-{ m RES}$ with $Q^2 < 0.7$ GeV 2 re-weighted
SPP adversarial	${ m CC1}\pi$ with $p_\pi < 0.3$ GeV re-weighted
Martini 1π	Alternative pion production model
1π hadron kinematics	Alternative pion production model
Low $E_{ u}$ excess	Events with $E_ u < 1250$ MeV re-weighted
$RS \to DCC$ re-weight	Alternative pion production model

• Upper block: studies for testing the fitter set-up. Lower block: physics-motivated studies.

• We systematically check the fitter outputs for a wide range of pseudo data studies:

Name	Notes
Asimov	Data is the nominal MC
Stat. & syst. fluctuations	Fit and XSec χ^2 coverage checked
Enhanced signal	All signal events re-weighted by $+20\%$
Enhanced DIS	All DIS events re-weighted by +20%
Enhanced flux	All events re-weighted by $+20\%$
Alternate event generator	GENIE MC sample used as data
Low Q ² SPP suppression	${\sf CC1}\pi extsf{-}{\sf RES}$ with $Q^2 < 0.7$ ${\sf GeV}^2$ re-weighted
SPP adversarial	${ m CC1}\pi$ with $p_\pi < 0.3$ GeV re-weighted
Martini 1 π	Alternative pion production model
1π hadron kinematics	Alternative pion production model
Low E_{ν} excess	Events with $E_ u < 1250$ MeV re-weighted
$RS \to DCC$ re-weight	Alternative pion production model

• Upper block: studies for testing the fitter set-up. Lower block: physics-motivated studies.

Subsequent slides will use GENIE MC as an example pseudo data study.

• Fitting software produces a set of parameters, parameter errors and their correlations:

Fit Output

• Fitted to fake data generated using an alternate event model (GENIE).

Cross Section Extraction

- Post-fit parameters and their errors correspond to an uncertainty on \hat{N}^{sig} .
- Template fitting also predicts ϵ and Φ .
- Towards a cross section result:
 - Use post-fit covariance matrix to generate random parameter values and values for additional parameters
 - Repeat process for a large number of toy experiments (\gtrsim 1000)
 - Calculate a cross section for each toy; uncertainty constructed from toy distribution
- Example (right) for projected pion cross section.

• Coverage studies:

- Check post-fit and cross section χ^2 distributions.
- Mean value comparison with expected degree of freedom indicates error coverage.
- Facilitates *p*-value tests.

• Coverage studies:

- Check post-fit and cross section χ^2 distributions.
- Mean value comparison with expected degree of freedom indicates error coverage.
- Facilitates *p*-value tests.

• Parameters and covariance:

- Check how parameters respond to the fit and/or fake data.
- Can study pull distributions on particular parameters.

• Coverage studies:

- Check post-fit and cross section χ^2 distributions.
- Mean value comparison with expected degree of freedom indicates error coverage.
- Facilitates *p*-value tests.

• Parameters and covariance:

- Check how parameters respond to the fit and/or fake data.
- Can study pull distributions on particular parameters.

• Reconstructed event distributions:

- See nominal, fake data and post-fit reconstructed event rates by sample.
- Indicates possible issues with fake data before checking cross sections.

• Coverage studies:

- Check post-fit and cross section χ^2 distributions.
- Mean value comparison with expected degree of freedom indicates error coverage.
- Facilitates *p*-value tests.

• Parameters and covariance:

- Check how parameters respond to the fit and/or fake data.
- Can study pull distributions on particular parameters.

• Reconstructed event distributions:

- See nominal, fake data and post-fit reconstructed event rates by sample.
- Indicates possible issues with fake data before checking cross sections.

• MINUIT:

- Error logs can indicate failed fits, forced positive-definite Hessians, output χ^2 values by sample at each iteration, current estimated distance to the minimum, etc.

• Example of coverage study:

- Left: good coverage, right: over-coverage, errors are too large for our true values.
- Pointed towards problems caused by the flux binning being too fine.

- Can assess the fit performance for reproducing pseudo data distributions:
- Example of reconstructed event distributions:

- Good overall agreement between post-fit values and fake data.
- \bullet Can quantify the fit performance by calculating χ^2 values.

Summary

- Template fitting is a useful unfolding strategy for extracting neutrino cross sections.
- Many ongoing analyses use this technique at T2K in various fitters.
- Plentiful diagnostics useful for identifying issues at all stages of fitting and cross section extraction.

For more information, lots of experts on template fitting are present at NuXTract!

• Fitting software produces a set of parameters, parameter errors and their correlations:

Fit Output

• Fitted to fake data generated using an alternate event model (GENIE).