Experimental data from a theoretical needs point of view

Kajetan Niewczas

Ka	jetan	Niew	<i>i</i> czas
----	-------	------	---------------

NuXTract 2023

1/20

Disclaimer

Outline

- (1) Historical survey
- (2) Motivation for comparisons
- (3) Practical overview
- (4) Needs for future measurements

P. Barreau et al., Nucl.Phys.A 402 (1983) 515-540

 \rightarrow Clear experimental conditions with straightforward interpretation

Kajetan Niewczas

P. Barreau et al., Nucl.Phys.A 402 (1983) 515-540

\rightarrow Experimental analysis resolved all ambiguities and provided uncertainties

Kajetan Niewczas	
------------------	--

→ Comparing to these datasets is **intuitive and meaningful**

Kajetan Niewczas

• Plenty of **useful datasets**: (*e*, *e*'); (*e*, *e*'p); (*e*, *e*'pp) ...

- Clear experimental conditions with straightforward interpretation
- Difficult access to datapoints; relience on files of unknown origin or digitalization
- Sometimes detailed descriptions available only in printed papers or PhD theses

-4<E,<4 MeV

4<E,<9 MeV

9<E,<14 MeV

Noteable efforts in data perseverance

Donal Day et al., arXiv:nucl-ex/0603032

Motivation for comparisons

Example

 \rightarrow In inclusive electron scattering SuSAv2 (RMF-based) is a more complete model than (L)FG

Example

 \rightarrow Generators do not compare well; G18_10a_02_11 seems to be better

Kajetan Niewczas

Example

FIG. 20. Measured ν_{μ} CC-0 π double-differential cross-section per nucleon in bins of true muon kinematics with systematic uncertainty (red bars) and total (stat.-syst.) uncertainty (black bars). The results are compared to NEUT version 5.4.1, which uses an LFG+RPA model with 2p2h (solid red line), Martini *et al.* (ashed blue line) and SUSAv2 (green dashed line) models. The full and shape-only (in parenthesis) χ^2 are reported. The last bin in momentum is not displayed for readability.

FIG. 25. Measured ν_{μ} CC-0r double-differential cross-section per nucleon in bins of true muon kinematics with systematic uncertainty (red bars) and total (stat.+syst.) uncertainty (black bars). The result is compared with NEUT (dashed blue line), NCWno version 18.02.1 (green solid line) and G1BUU 2019 (pink dotted line) prediction. All generators use an LFG+RPA model that includes 2p2h. The full and shape-only (in parenthesis) χ^2 are reported. The last bin in momentum is not displayed for readability.

Phys.Rev.D 101 (2020) 112001

Kajetan	Niewczas	
---------	----------	--

What can we learn from modern data?

- The ultimate goal of any comparisons should be drawing physics conclusions
- The theoretical perspective is ignorant of the statistical methodology
- In the omniscient case:
 - Comprehensive exclusive electron measurements could constrain
 - \rightarrow vector part of interactions, lepton-nucleus dynamics, generators...
 - High statistics neutrino measurements could constrain
 - \rightarrow axial part of interactions, subtilities of in-medium weak interactions...
- Q: Will we meet at the some point somewhere in the future?

What do we expect the endgame to look like?

Practical overview

To prepare a data comparison, we need:

Flux predictions	\rightarrow	reliable
Final state topology	\rightarrow	unambiguous
Relevant interaction dynamics	\rightarrow	meaningful
Varibles reconstruction	\rightarrow	clear
Data points	\rightarrow	physical

Flux predictions

- It is essential to compare using the same neutrino energy distribution
- e.g. T2K had a number of flux evaluation analyses (2020, 2016, 2013...)
 - \rightarrow all of them are well-documented and available on the website
 - \rightarrow some data releases **explicitly contain txt files** [Phys.Rev.D 98 (2018) 012004]
 - Many neutrino flux files appear from **unverified sources**
- e.g. NuWro has a number of flux files without proper documentation \rightarrow especially problematic for older experiments

Q: Should we incorporate more details of the flux predictions? How will this be resolved for analyses using the "PRISM-like" fluxes?

Final state topology

- We need to make our best to **compare apples with apples**
- e.g. Usage of topologies like $CC0\pi$ is a great progress in the community \rightarrow we are not relying on model-dependent pion absorption anymore \rightarrow but what is the treshold on the 0π in the final state?
 - Experimental results always involve certain acceptances
- e.g. Even sophisticated 4π detectors have angular dead zones \rightarrow seems to be impossible to compare without a detector simulation?
- Q: Is it possible to publish results with a complete event selection know-how? Can we ensure that the published data have long-term viability?

Variables reconstruction

- The unfolding procedure is inevitable while performing neutrino measurements
- e.g. This whole workshop :)
 - Experimental results sometimes involve cuts on reconstructed variables
- e.g. MINERvA CC1 π^+ results involve Q_{rec}^2 and $W_{rec} < 1.4$ [Phys.Rev.D 92 (2015) 092008] \rightarrow the obtained results are affected drastically

Q: How can we draw physical conclusions on reconstructed variables?How can we be sure that this is not model-dependent?Will increasing the statistics solve majority of our problems?

Data points

- Data releases are the main source of acquiring modern measurements
- e.g. Data is usually released in the **ROOT format**
 - \rightarrow theoreticians do not use ROOT
 - \rightarrow this forces us to write special scripts to extract a few datapoints
 - \rightarrow extracting more sophisticated information is troublesome

Q: Is it possible to always provide data in a txt-like file?How will we manage this once we approach multi-dimensional data?Is is possible to provide scripts providing minimal working examples?

Conclusions

The idealized data release could contain a **complete working example**:

- \rightarrow Neutrino flux as a txt file
- $\rightarrow\,$ A precise description of the experimental topology
- ightarrow Procedures allowing to compare to data without additional assumptions
- \rightarrow Data points in an easily accessible format
- \rightarrow Example scripts generating plots as intended by the author
- **Q:** This is a greedy list. What is the compromise?

Needs for future measurements

Inclusive one- and two-nucleon knock-out

Semi-inclusive two-nucleon knock-out

Exclusive two-nucleon knock-out

NuXTract 2023

20 / 20