MicroBooNE Cross Section Extraction Techniques

Afroditi Papadopoulou <u>apapadopoulou@anl.gov</u> on behalf of the MicroBooNE Collaboration 10/3/2023, NuXTract, CERN

MicroBooNE Data Events

• Largest available neutrino-argon data set with ~500k recorded neutrino interactions

• Over 10 released and more than 30 active MicroBooNE cross section analyses

• Multiple cross section extraction techniques investigated

Already Public Results

CC inclusive

- 1D & 2D v_µ CC inclusive @ BNB <u>Phys. Rev. Lett. 123, 131801 (2019)</u>
- 1D ν_µ CC E_ν @ BNB <u>Phys. Rev. Lett. 128, 151801 (2022)</u>
- 3D CC E_v @ BNB <u>arXiv:2307.06413</u>, submitted to PRL
- 1D v_e CC inclusive @ NuMI <u>Phys. Rev. D105, L051102 (2022)</u> <u>Phys. Rev. D104, 052002 (2021)</u>

Pion production

ν_µ NCπ⁰ @ BNB
 Phys. Rev. D 107, 012004 (2023)

 $CC0\pi$

- 1D ν_e CCNp0π @ BNB Phys. Rev. D 106, L051102 (2022)
- 1D & 2D ν_µ CC1p0π Kinematic Imbalance @ BNB <u>Phys. Rev. Lett. 131, 101802 (2023)</u> <u>Phys. Rev. D 108, 053002 (2023)</u>
- 1D ν_µ CC1p0π @ BNB <u>Phys. Rev. Lett. 125, 201803 (2020)</u>
- 1D v_{μ} CC2p @ BNB arXiv:2211.03734, submitted to PRL
- 1D ν_µ CCNp0π @ BNB
 Phys. Rev. D102, 112013 (2020)

Rare channels

- η production @ BNB <u>arXiv:2305.16249</u>, submitted to PRL
- Λ production @ NuMI <u>Phys. Rev. Lett. 130, 231802 (2023)</u>

Already Public Results

CC inclusive

Phys. Rev. D105, L051102 (2022)

Phys. Rev. D104, 052002 (2021)

Pion production

ν_µ NCπ⁰ @ BNB
 Phys. Rev. D 107, 012004 (2023)

Techniques discussed by Nitish/Xin & Afro

Rare channels

- η production @ BNB
 - arXiv:2305.16249, submitted to PRL
- Λ production @ NuMI

Phys. Rev. Lett. 130, 231802 (2023)

Single Bin Extraction

- Total flux-integrated cross section formula
- Results reported in true space to allow for theory comparisons
- Used in statistically limited analyses
- Plan for differential results with full data set (2x current stats)
- Systematics by allowing ε , Φ , and B to fluctuate

Number of expected cosmic and v-induced backgrounds

Signal selection efficiency

Observed data

Number of argon targets in fiducial volume

 $\epsilon \times N_{\text{target}} \times \Phi_{\nu}$

Integrated flux

<u>Phys. Rev. D104, 052002 (2021)</u> <u>Phys. Rev. D 107, 012004 (2023)</u> <u>arXiv:2305.16249</u>, submitted to PRL

Bayesian Method

- Use Bayesian method for propagating data / MC statistical uncertainties
- Restricted (R) phase space total cross section due to momenta thresholds
- $\Gamma = 0.64 = \Lambda \rightarrow p + \pi^{-1}$
- Obtain posterior distribution on the background acceptance and efficiency using <u>TEfficiency</u> class from ROOT

$$\sigma_R = \frac{N_{\rm obs} - B}{T \Phi \Gamma \varepsilon}$$

$$egin{aligned} arphi_\epsilon(\epsilon) &= m{P}(\epsilon|\epsilon_{
m MC}) \ arphi_{B}(B) &= m{P}(B|B_{
m MC}) \end{aligned}$$

Bayesian Method

• Posterior distribution on data event rate

 $P(N|N_{\rm obs}) = \frac{P(N_{\rm obs}|N)P(N)}{\int P(N_{\rm obs}|N)P(N)dN}$

- Use uniform priors
- Throw many values of ε, B and N from their respective posterior distributions
- Systematic uncertainties are included by throwing fluctuations of these, using the covariance matrix of B, ϵ and Φ
- Build the posterior distribution on $\sigma_{\!_R}$

Bayesian posterior distributions on extracted cross section for a given number of data events

Forward Folding

- Lives in reconstructed space
- Avoids biases introduced by unfolding
- Requires overall efficiency (selection eff x acceptance) in reconstructed bin i (MC)
- Smearing matrix **S** included in data release to allow testing against other theory predictions
- Does not propagate MC stat uncertainties on smearing matrix (<u>arXiv:2112.09194</u>)
- Systematics by allowing ε , Φ , and B to fluctuate

 $S_{ij} = P(\text{observed in bin i} | \text{true value in bin j})$

$$\left\langle \frac{d\sigma}{dp_{\mu}^{\mathsf{reco}}} \right\rangle_{i} = \underbrace{\frac{N_{i} - B_{i}}{\tilde{\epsilon_{i}} N_{target} \cdot \Phi_{\nu_{\mu}} \cdot (\Delta p_{\mu})_{i}}}_{i}$$

Smearing Matrix (p_µ)

<u>Phys. Rev. Lett. 123, 131801 (2019)</u> <u>Phys. Rev. D102, 112013 (2020)</u>

Effective Efficiency

- Unfolded in true space
- Model dependent
- No impact on the analysis conclusions due to large uncertainties
- New variations of the analysis with smaller uncertainties used Wiener SVD
- Systematics by allowing ε, Φ, and B to fluctuate

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X_n} = \frac{\mathbf{N}_n^{\mathrm{on}} - \mathbf{N}_n^{\mathrm{off}} - \mathbf{B}_n}{\overbrace{\boldsymbol{\epsilon}_n} \cdot \Phi_\nu \cdot \mathbf{N}_{\mathrm{target}} \cdot \Delta_n}$$

X = kinematic variable of interest

D'Agostini

- Lives in true space
- Number of iterations determined based on L-curve and "spikiness vs χ²"
- **S** = smearing matrix
- **P** = prior / best guess for truth
- Systematics by allowing ε, Φ, and B to fluctuate

Unfolded BNB CC2p: True δP_T (GeV/c)

D'Agostini

- Lives in true space
- Number of iterations determined based on L-curve and "spikiness vs χ^2 "
- **S** = smearing matrix
- **P** = prior / best guess for truth
- Systematics by allowing ε , Φ , and B to fluctuate

$$\nabla_{Up}(i) = \frac{\text{spikiness}(i+1) - \text{spikiness}(i)}{\chi^2_{\text{Fit}}(i+1) - \chi^2_{\text{Fit}}(i)}$$
$$\nabla_{Down}(i) = \frac{\text{Spikiness}(i) - \text{Spikiness}(i-1)}{\chi^2_{\text{Fit}}(i) - \chi^2_{\text{Fit}}(i-1)}$$

$$\nabla_{Diff}(i) = \nabla_{Up}(i) - \nabla_{Down}(i)$$

Look for iteration with difference close to 0

<u>Phys. Rev. D 106, L051102 (2022)</u> arXiv:2211.03734

Wealth Of Cross Section Results To Follow!

CC inclusive

- v_{μ} CC inclusive @ NuMI
- v_e^{\prime}/v_{μ} ratios @ BNB, NuMI
- 3D E_{v} , E_{μ} , hadronic energy @ NuMI & BNB
- anti-v_e @ NuMI

Pion production

- ν_{μ} CC1 π^{+} @ BNB, NuMI
- v_{μ} CCN π @ NuMI
- $1D v_{\mu} CC \pi^0$ @ BNB
- 2D ν_{μ}^{Γ} CC/NC π^{0} @ BNB
- 2D $v_{e,\mu}^{\Gamma} NC\pi^0 @ BNB$

$CC0\pi$

- 2D v_{μ} CC1p0 π Generalized Kinematic Imbalance @ BNB
- v_{μ} CC0 π inclusive @ BNB
- 2D ν_μ CCNp0π @ BNB
- 1D v_e^{Γ} CC0 π Np @ NuMI
- 1D ν_µ NC1p0π @ BNB

Rare & novel channels

- v_{μ} CC Kaon @ BNB, NuMI
- MeV-scale Physics in MicroBooNE
- Neutrons @ BNB

Backup Slides

TABLE IV. Tuned parameter values and uncertainties after fitting to T2K CC0 π data for the nominal simulation and three tunes that build to the final four parameter tune. Note that postfit χ^2 values are quoted here only for the 58 bins included in the fit (excluding the highest muon momentum bin in each cos θ bin), and using diagonal elements of the covariance matrix only. In the text and figures, pre- and postfit χ^2 comparisons are also quoted for the full T2K dataset of 67 bins. "Norm." is an abbreviation for normalization.

	MaCCQE fitted value	CC2p2h Norm. fitted value	CCQE RPA Strength fitted value	CC2p2h Shape fitted value	$\frac{\text{T2K}}{\chi^2_{\text{diag}}/\text{N}_{\text{bins}}}$
Nominal (untuned)	0.961242 GeV	1	100%	0	106.7/58
Fit MaCCQE + CC2p2h Norm.	$1.14\pm0.07~{ m GeV}$	1.61 ± 0.19	100% (fixed)	0 (fixed)	71.8/58
Fit MaCCQE + CC2p2h Norm + CCQE RPA Strength	$1.18\pm0.08~\text{GeV}$	1.12 ± 0.38	$(64 \pm 23)\%$	0 (fixed)	69.7/58
Fit MaCCQE + CC2p2h Norm + CCQE RPA Strength + CC2p2h Shape	$1.10\pm0.07~\text{GeV}$	1.66 ± 0.19	$(85\pm20)\%$	$1^{+0}_{-0.74}$	52.5/58

FIG. 7. Correlations between parameters after fitting to T2K $CC0\pi$ data.

Phys. Rev. D 105, 072001 (2022)

Nuclear Effects in Event Generators

Rev. Mod. Phys. 89, 045002 (2017)

Struck nucleon motion in argon

Single-Proton Knockout

- Dominated by Charged Current Quasi-elastic (CCQE) interactions
- Simple single muon-proton events
- Dominant at MicroBooNE energies

TKI Neutrino Measurements

Experiment	Target	References
Т2К	СН	Phys.Rev.D 103 11, 112009 (2021) Phys. Rev. D 98, 032003 (2018)
MINERvA	СН	Phys. Rev. Lett. 121, 022504 (2018) Phys. Rev. D 101, 092001 (2020) Phys. Rev. D 102, 072007 (2020)

But none on argon up to now!

TKI Neutrino Measurements

Experiment	Target	References
Т2К	СН	Phys.Rev.D 103 11, 112009 (2021) Phys. Rev. D 98, 032003 (2018)
MINERvA	СН	Phys. Rev. Lett. 121, 022504 (2018) Phys. Rev. D 101, 092001 (2020) Phys. Rev. D 102, 072007 (2020)
MicroBooNE	Ar	<u>arXiv:2301.03706</u> (accepted to PRL) <u>arXiv:2301.03700</u> (accepted to PRD)

First single- and double-differential single-proton cross section measurements on argon in transverse kinematic imbalance

Transverse Missing Momentum δp_{T}

• S = Signal, B = Background

- **QE** dominance in peak below Fermi momentum (~250 MeV/c)
- MEC/RES mainly in high momentum tail

GENIE v3.0.6 G18_10a_02_11b + tune* Nieves QE & MEC, Berger Sehgal RES²¹

Transverse Orientation $\delta \alpha_{_{\rm T}}$

- + $\delta \alpha_{_{\rm T}}$ asymmetry due to proton FSI
- MEC/RES fractional contribution enhanced in ~180° region

<u>arXiv:2301.03706</u> (accepted to PRD) * <u>Phys. Rev. D 105, 072001 (2022)</u> GENIE v3.0.6 G18_10a_02_11b + tune* Nieves QE & MEC, Berger Sehgal RES²²

Transverse Orientation $\delta \alpha_{_{\rm T}}$

Need to move from event distributions to cross sections→ Wiener-SVD unfolding <u>JINST 12 P10002 (2017)</u> More details in backup slides

<u>arXiv:2301.03706</u> (accepted to PRD) * <u>Phys. Rev. D 105, 072001 (2022)</u>

- Output quantities in regularized space
- Unfolded data spectrum
- Smearing Matrix A_C
 *Applied on theory predictions and included in data release

- Output quantities in regularized space
- Unfolded data spectrum
- Smearing Matrix A_c

*Applied on theory predictions and included in data release

0.0	-0.03	-0.06.0.05.0.09.0	0.08 0.03	0.00	0.10	0.22	0.27	1	L
0.8 ت	0.15 0.14 0.07 0.08	3 0.14 0.19 0.20 0	0.16 0.10	0.12	0.27	0.38	0.42	-().8
0.6	- 0. 00 0.06 0.16 0.19	0.13 0.04 0.00 (0.02 0.15	0.33	0.40	0.24	0.16	-() 6
	-0.05-0.02 0.05 0.09	0.05 -0.02 -0.01	0.12 0.33	0.39	0.25	0.05	-0.04		
0.4 0.13 0.12 -0.03 -0.05	5 0.05 0.15 0.26 (0.00 0.13 0.19 (0.25 0.09 0.10 -0.03	-0.03 -0.10	-0.04 -0.07	0.01	0.04	-0.4).4	
	0.03 -0.03 -0.08 -0.00 0.02 0.04 0.07 0.20	0 0.19 0.27 0.21 (0 0.30 0.19 0.11 (0.10 0.04 0.05 0.02	0.02 0.03	0.04 0.04	0.06 0.03	0.06 0.03	-0).2
-0.01 0.13 0.34 -0.01 0.15 0.34 0.22 0.32 0.20	0.01 0.13 0.34 0.41 -0.01 0.15 0.34 0.25 0.22 0.32 0.20 0.07	0.21 0.03 -0.01 (0.05 -0.04-0.05- 0.04 0.01 0.01 (0.00 0.04 0.02 0.04 0.01 -0.01	0.04 0.04 -0.01	0.01 0.01 -0.00	-0.03 -0.03 0.01	-0.04 -0.04 0.01	_()
С	0.61 0.52 0.20 0.08	2.0.12 0.15 0.14	0.07 -0.01	-0.04	-0.02	0.01	0.03		
\tilde{T} rue δp_{T} [GeV/c]									

JINST 12 P10002 (2017)

Input Quantities

- Measurement (Data)
- Background (Cosmics + MC)
- Response Matrix (MC)
- Total Covariance Matrix (MC)

Cross Section Extraction with Wiener SVD Unfolding JINST 12 P10002 (2017)

Input Quantities

- Measurement (Data)
- Background (MC)
- Response Matrix (MC)
- Total Covariance Matrix (MC)

Probability that a generated event is reconstructed and selected

Diagonal matrix with flat ~6% efficiency

Input Quantities

- Measurement (Data)
- Background (MC)
- Response Matrix (MC)
- Total Covariance Matrix (MC)

Includes information on statistical and systematic uncertainties

Uncertainties

- + Statistical (1.5%)
- + Number of argon targets (1%)

Total (11%)

Systematics-dominated analysis

v_{μ} CC Inclusive 1D

- Unfolding using Wiener-SVD JINST 12 P10002 (2017)
- First ever measurement of cross section as a function of energy transfer
- GiBUU results in best performance

v_{μ} CC Inclusive 1D

Observe the visible hadronic energy, muon energy and direction
Use them to test model validity due to missing hadronic energy

v_{μ} CC Inclusive 3D

32

- First neutrino-argon cross sections for an exclusive 2p final state
 - Various observables studied
- γ_{Lab}: angle between the two protons
 Sensitive to modeling choices for MEC and QE

- First neutrino-argon cross sections for an exclusive 2p final state
 - Various observables studied
- γ_{Lab} : angle between the two protons Sensitive to modeling choices for -MEC and QE

MICROBOONE-NOTE-1117-PUB

- First neutrino-argon cross sections for an exclusive 2p final state
 - Various observables studied
- γ_{Lab} : angle between the two protons
 - Sensitive to modeling choices for MEC and QE
- Data-MC shape & normalization differences identified

NC π^0

Λ Production

Event Selection

- Selection identifies a muon candidate and a proton-pion candidate pair
- Proton-pion "island" activity separated from muon candidate
- \bullet Proton-pion kinematics consistency with Λ baryon decay

Also see poster by <u>C.Thorpe</u> MICROBOONE-NOTE-1097-PUB

Λ Production

 Λ baryon decay consistency

• Keeping events with $1.09 < invariant mass W < 1.14 GeV/c^2$ and angular deviation $\alpha < 14^{\circ}$

Other Hyperon

EXT

Other v

38

MicroBooNE Simulation, Preliminary NuMI FHC, 1.0 × 10²¹ POT

Signal $\times 20$

Dirt

450 400 400

350 300

Partial Phase Space Definition

As the selection can only identify Λ baryons that decay into a proton and π^- with momenta above detection thresholds, the cross section must be corrected to only include this portion of the phase space. Our restricted phase space cross section, σ_* , is related to the total cross section for quasi-elastic Λ production by:

$$\sigma_* = F\sigma,\tag{1}$$

$$F = \frac{1}{\sigma} \int_0^\infty f(p_\Lambda) \frac{d\sigma}{dp_\Lambda} dp_\Lambda.$$
 (2)

 $f(p_{\Lambda})$ is the fraction of Λ baryons decaying via $\Lambda \to p + \pi^-$ that will be above the detection thresholds. This function is shown in Fig. 3, and may be calculated with:

$$f(p_{\Lambda}) = \begin{cases} 0 & \text{if } A > B \\ \frac{B-A}{2} & \text{Otherwise} \end{cases},$$
(3)

$$A = \max\left(\frac{\sqrt{M_p^2 + |p_p^{\text{thresh}}|^2} - \gamma E_p}{\beta \gamma p}, -1\right),\tag{4}$$

$$B = \min\left(\frac{-\sqrt{M_{\pi}^2 + |p_{\pi}^{\text{thresh}}|^2} + \gamma E_{\pi}}{\beta \gamma p}, 1\right),\tag{5}$$

$$E_p = \sqrt{M_p^2 + p^2},\tag{6}$$

$$E_{\pi} = \sqrt{M_{\pi}^2 + p^2}.$$
 (7)

 M_p and M_{π} are the rest masses of the proton and π^- respectively, $p_p^{\text{thresh}} = 0.3$ GeV, $p_{\pi}^{\text{thresh}} = 0.1$ GeV are the detection thresholds, p = 0.101 GeV is the momentum the decay products are emitted with in the Λ baryon's rest frame, β is the boost factor of the Λ baryon in the detector's frame, and $\gamma = 1/\sqrt{1-\beta^2}$. Natural units are used.

Phys. Rev. Lett. 130, 231802 (2023)

Studying the selection efficiency as a function of the Λ baryon's momentum, it is shown there is some shape to this distribution.

Figure 3: The function $f(p_{\Lambda})$ featured in equations 2 and 3. The two discontinuities in gradient occur when one, and then both, particles produced in the decay are always above the detection threshold.

We adopt a Bayesian approach to propagate the statistical and systematic uncertainties through this formula: Posterior distributions describing the MC statistical uncertainties on the efficiecy and selected background are generated using the TEfficiency class from Root [13]:

$$\phi_{\epsilon}(\epsilon) = P(\epsilon|\epsilon_{\rm MC}) \tag{25}$$

$$\phi_B(B) = P(B|B_{\rm MC}) \tag{26}$$

 ϵ and *B* are hypothetical true efficiency and background rates and ϵ_{MC} and B_{MC} and the efficiency and background rates observed in the MC. The posterior distribution on the number of events observed in data is:

$$P(N|N_{\text{Obs}}) = \frac{P(N_{\text{Obs}}|N)P(N)}{\int_{a}^{b} P(N_{\text{Obs}}|N)P(N)dN}$$
(27)

Where N_{Obs} is the number of events observed in data and N is a hypothetical true event rate. P(N) is the Bayesian prior, a uniform distribution on the interval [a, b], for which we use [0, 20]here. $P(N_{\text{Obs}}|N)$ is the Poisson probability of observing N_{Obs} counts with a mean count of N.

We build the posterior distribution of σ_* using a Monte Carlo method: For a fixed value of N_{Obs} , we draw many values of ϵ , B and N from their respective distributions. Systematic uncertainties are included by drawing three smearing parameters, α_{ϵ} , α_{Φ} and α_B from a three dimensional Gaussian parameterised by the covariance matrix between ϵ , Φ and B, shown in tables 6a, 6b and 6c for the different procedures for extracting uncertainties on the background. For each set of six parameters, the cross section is calculated:

$$\sigma_* = \frac{N - (B + \alpha_B)}{T(\Phi + \alpha_\Phi)\Gamma(\epsilon + \alpha_\epsilon)}$$
(28)

By repeatedly calculating σ_* and binning the results, we obtain the posterior distribution, containing all statistical and systematic uncertainties, shown for both data taking periods with

η Meson Production

- Unique probe of higher resonances such as N(1535)
- Identified via decay to 2γ with invariant mass of 548 MeV
- Include protons to estimate reconstructed invariant mass of hadronic system

See David's talk

arXiv:2305.16249, submitted to PRL

D'Agostini

- Lives in true space
- Number of iterations determined based on L-curve and "spikiness vs χ^2 "
- **S** = smearing matrix
- **P** = prior / best guess for truth

<u>Phys. Rev. D 106, L051102 (2022)</u> arXiv:2211.03734 <u>PhD Thesis</u>

