

Model Validation Techniques for Cross-Section Extraction

Ben Bogart, London Cooper-Troendle, Wengiang Gu, Lee Hagaman, Xin Qian, <u>Nitish Nayak</u>

4th October, 2023 **NuXtract Conference**

Introduction

- Many different effects, even for "simple" interactions :
- No first-principle based full description yet different models superimposed
 - QCD nature of interactions means difficult to envision a non-perturbative approach
- Models necessarily approximations = CV + uncertainties (i.e need to evaluate "model space" using data)
- Real data can be very informative to test self-consistency and probe model bias

Measured Distribution

For other MicroBooNE approaches, see Afro's talk earlier

- To use nominal flux in comparisons, one must show small model bias for $D(E_{\nu} \rightarrow T_{reco})$ wrt quoted uncertainty budget (L. Koch, S. Dolan - Phys Rev D 102.113012)
- We check for model bias through a variety of tests. However, principal approach is to look at things "post-data"
 - Use real data to inform whether uncertainties are enough to <u>cover</u> observed discrepancies
- Fake data tests play an important role too :
 - Probe sensitivity of test to <u>uncover</u> injected model bias
- necessary

Approach to Cross-Section Extraction

• Unfold IFF a sufficiently sensitive test tells us the model bias is sub-dominant wrt total uncertainties, otherwise inflate them as

Assessing Model using Data

- We can use standard goodness of fit tests (χ^2) to probe model performance
- But a single test isn't enough (bins are correlated significantly) :
- Moreover just goodness of fit doesn't validate $D(E_{\nu} \rightarrow T_{reco})$ need more sensitive tests

• Probe χ^2 along each eigenvector of covariance matrix -> check outliers (after correcting for look-elsewhere) : "differential goodness of fit"

Conditional Constraining Method

- Joint distribution of observables (X, Y) : assumed gaussian in each bin — for eg (E_{μ} , E_{had})
- We can use real data observed in one observable (E_{μ}) to inform how the model space performs in another observable (E_{had})
 - More stringent than just comparing E_{had} data and MC directly with uncertainties

Conditional expectation & covariance

$$\mu_{X,Y} = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \qquad \Sigma_{X,Y} = \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix}$$

 $\mu_{Y|X} = \mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (X - \mu_X)$ $\Sigma_{Y|X} = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$

Uncertainties include the flux, detector response, cross-section model etc

• Post-constraint - only uncorrelated uncertainty on E_{had} remains

Probes :

assumptions used by the model for $D(E_{\nu} \rightarrow E_{\nu}^{reco})$ + uncertainties taken on that assumption

Conditional Constraining Method

- See both sizable drop in post-constraint error and good agreement with data
- Given data in $(E_{\mu}, \cos \theta_{\mu})$ = within model possibilities in $(E_{\mu}, \cos \theta_{\mu})$, we can say :
 - Data in E_{had} is also within same model possibilities $= D(E_{\nu} \rightarrow E_{\nu}^{Reco})$ is "validated" by data
- Sensitivity to the mapping ~ post-constraint error, (smaller error => more stringent test using data)
- Centerpiece of our approach, we use conditional constraint tests exhaustively to ensure robustness before unfolding
 - (NB : validation test, unfolding still uses unconstrained model)

Phys. Rev. Lett. 128, 151801 (2022)

Constraint tests in Multiple Dimensions

- Bin constraining ($P_{\mu}, \cos \theta_{\mu}$) and constrained variables ($E_{had}, \cos \theta_{\mu}$) in 2D
- Constrained prediction is compatible with data. Our $D(E_{\nu} \rightarrow E_{\nu}^{Reco})$ model still capable at this level
- Even more stringent $D(E_{\nu} \rightarrow E_{\nu}^{Reco})$ validation for inclusive channels

<u>Triple-Differential Inclusive</u> $\nu_{\mu}CC$ (submitted to PRL)

7

Fake Data Studies

energy i

	Proton energy scaling	Conditional Constraint Test Sensitivity (FC & PC) [Sigma Deviation]	Conditional Constraint Differential Test Sensitivity [Sigma Deviation]	E _v Cross-section Bias [Sigma Deviation]
	0.95	~0.0	~0.0	~0.0
More missing energy injected	0.85	~0.0	0.4	~0.0
	0.75	1.3	1.5	0.5
	0.65	4.2	5.7	1.9

- Fake data tests help us visualize sensitivity of tests for uncovering model bias
- Down-scale proton energy ("energy goes missing") and perform conditional constraint tests and compare to χ^2 after extracting the cross-section
- Shows model validation tests for our uncertainty budget is more sensitive to the bias than cross-section extraction — especially for E_{ν}

MicroBooNE In-Progress

Sensitivity of Constraint Tests vs Unfolded **Cross-Sections**

- We see conditional constraint tests are more sensitive than inherent bias in cross-section
 - We will be able to uncover this bias in real data before extracting the cross-section
 - Successful validation of real data => bias is small wrt uncertainties

- Perform many model validation tests for eg individually in each channel (FC, PC, FC&PC, differential etc)
- Comparing to χ^2 of extracted cross-section using fake data with downscaled proton energy

FDS using different generators

- Check conditional constraint tests against different generators for eg, GENIEv2, NuWro ullet
- Behavior as expected from before model validation using conditional constraint is (more) sensitive
- Successful validation of real data => bias is small wrt uncertainties

Full Systematics

ninany							
iiiiai y		Generator Used for FDS	E _v Cross-section Bias	v Cross-section Bias	Model [Sigma		
ENIE v2.12.10 /ndf=22.9/8			[Sigma Deviation]	[Sigma Deviation]			
icroBooNE MC							
/ndf=33.1/8		GENIEv2	0.2	2.9			
ake data		(7.24E20)					
ENIE VZ)		GENIEv3	~0.0	~0.0			
l syst + stat		(5.33E19)					
		NuWro	0.01	0.1			
		(6.11E20)					
2 2.5	I						
$v = E_v - E_u$ (GeV)							

Summary and Next Steps

- We propose a new approach to validate model esp $D(E_{\nu} \rightarrow T_{reco})$ in order to extract robust cross-sections to compare to various predictions
- Allows unfolding to indirect/direct observables ulletincluding neutrino energy, energy transfer etc
- Enables easy comparisons of extracted cross- \bullet section across different models

MicroBooNE Preliminary

- So far focused on ν_{μ} -CC inclusive results
- Future results will focus on 0pNp, π^0 final states and other exclusive measurements as well => more model validation needed as well

201 collaborators, 36 institutions, 5 countries

Thank you!

MicroBooNE collaboration @ 2022

Neutrino Identification

- Topology agnostic reconstruction => generic neutrino selection
- Use effective detector boundaries and directionality from trajectory and dQ/dx fitting to reject cosmic muons
 - Through-going and stopping

Phys. Rev. Applied 15, 064071 (2021)

- 80% efficiency for selection, similar purities
 - Downstream selections/PID for various topologies
- Reject 99.999% of cosmic activity!

14

ν_{μ} -CC Selection

- XGBoost-based BDT based on humanengineered inputs
- Achieves >90% purity

	Efficiency	Purity	Cosmic-µ rejection
Trigger	1	5e-5	1
Cosmic-ray rejection	80%	65%	7e-6
$ v_{\mu}$ CC with pattern recognition (Fully & Partially Contained)	<mark>68%</mark>	92%	7e-7

-- <table-cell> 🔊 mu- 160 MeV -- 💽 🧊 proton 10 MeV -- 👻 🕼 proton 133 M --- 👻 🕼 e- 199 MeV --- 📄 🏠 e- 21 MeV --- 🗐 🥼 gamma 1 MeV --- 🗐 🕼 gamma 3 MeV --- 🗐 🖉 gamma 3 MeV

ν_{μ} -CC Energy Reconstruction

- Range based estimator for μ
- For rest : dQ/dx -> dE/dx energy scale calibration using stopping muon/ proton samples
- Additional scaling for EM showers to match π^0 mass peak
- Achieve 15-20% resolution for ν_{μ} -CCs w/ ~10% bias

Analysis Binning

- 138 analysis bins in total in $(E_{\nu}, P_{\mu}, \cos \theta_{\mu})$
 - ~10% resolution on P_{μ}
 - $\delta \theta_{\mu} \sim 5^{\circ}$ for forward angles
- Binning chosen so we have good stats everywhere
 - Efficiency is pretty good across phase-space

MICROBOONE 23 -NOTE-1122-PUB

Generic neutrino preselection

	MaCCQE (GeV)	CC2p2h Norm.	CCQE RPA Strength	CC2p2h Shape
Untuned	0.961242	1	100%	0
Tuned	1.10 ± 0.07	1.66 ± 0.19	(85 ± 20) %	$1^{+0}_{-0.74}$

- Updated to GENIEv3
 - " μ B-tune" tuned to T2K CC0 π data (no actual μ B data used)
 - Consider mainly CCQE (RPA, Ma) and 2p2h parameters for CV + uncertainties
 - Additional GENIE + custom knobs (> 50) considered for uncertainties

Systematic Uncertainties

- BNB Flux
 - MiniBooNE (hadron production, beam transport, POT counting)
- Neutrino Cross-Sections
 - Apart from GENIE v3.0.6 knobs for model set G18_10a_02_11a
 - Custom knobs from " μ B-tune" to T2K CC0 π data : MaCCQE, RPA, 2p2h norm & shape
 - Others (Coulomb corrections, Δ -contributions to 2p2h etc)
- Detector systematics
 - TPC, Light yield, SCE, Recombination
- Hadron-Argon re-interactions :
 - Geant4Reweight-based
- MC Statistical
- Dirt Systematics
 - Material outside cryostat

$$\frac{d^2\sigma}{dT_l \cos\theta} = \frac{\sum_j U_{ij}(d_j - b_j)}{\Phi \cdot T \cdot \varepsilon_i \cdot (\Delta T_l, \Delta \cos\theta)_i}$$

- Typically unfolded to unknown true flux, not nominal fluxaveraged
- In principle, robust to true neutrino energy -> reco observable map, $D(E_{\nu} \rightarrow T_{reco})$ especially when looking at direct observables
- However, still need reference flux to compare to model predictions
 - Can be quite complicated in practice (L. Koch, S. Dolan -PhysRevD.102.113012)
- Model comparisons usually done using nominal flux as a result since its simple
 - for easy model comparisons

Our approach to Cross-Section Analyses

$$M_i = R_{ij}S_j + B_i$$

- M_i : Measurement in reco bin *i* of some observable
- R_{ij} : mapping between true bin *j* and reco bin *i* constructed using nominal flux
- B_i : Background in reco bin *i*
- S_i : Extracted cross-section result, given by $S_{j} = \frac{\int \bar{F}(E_{\nu j}) \cdot \sigma(E_{\nu j}) dE_{\nu j}}{\int \bar{F}(E_{\nu i}) dE_{\nu i}} \text{ (explicitly nominal flux-averaged xsec)}$
- Easier to compare to model predictions (just use nominal) flux)

• Model validation allows us to probe $D(E_{\nu} \rightarrow T_{reco})$ and use nominal flux-weighted xsec

Model Validation Principle

$$\chi^2 = (M - P)^T \times C$$

 E_{ν}^{true}

• Unfolding to E_{ν} we want to be able to validate

$$E^{e} = E_{\mu} + E_{had}^{vis} + E_{had}^{missing} \implies D(E_{\nu} \to E_{\nu}^{Red})$$

• But we're not running completely blind (energy is conserved) • Its not event by event but we have information about distributions of • E_{ν} (from flux), E_{μ} and E_{had}^{vis} (from data)

Equation For Unfolding

$$R_{ij} = \widetilde{\Delta}_{ij} \cdot \widetilde{F}_{j}$$

$$\widetilde{\Delta}_{ij} = \frac{POT \cdot T \cdot \int_{j} F\left(E_{\nu j}\right) \cdot \sigma\left(E_{\nu j}\right) \cdot D\left(E_{\nu j}, E_{rec i}\right) \cdot \varepsilon\left(E_{\nu j}, E_{rec i}\right) \cdot dE_{\nu j}}{POT \cdot T \cdot \int_{j} \overline{F}\left(E_{\nu j}\right) \cdot \sigma\left(E_{\nu j}\right) \cdot dE_{\nu j}}$$

➡ a MC ratio, less sensitive to Xs uncertainty

$$\widetilde{F}_{j} = POT \cdot T \cdot \int_{j} \overline{F} \left(E_{\nu j} \right) \cdot dE_{\nu j}$$
$$S_{j} = \frac{\int_{j} \overline{F} \left(E_{\nu j} \right) \cdot \sigma \left(E_{\nu j} \right) \cdot dE_{\nu j}}{\int_{j} \overline{F} \left(E_{\nu j} \right) \cdot dE_{\nu j}}$$

Not subject to prior knowledge of the Xs uncertainty

 $= \left(oldsymbol{M} - oldsymbol{B} - oldsymbol{R} \cdot oldsymbol{S}
ight)^T \cdot oldsymbol{V}^{-1} \cdot \left(oldsymbol{M} - oldsymbol{B} - oldsymbol{R} \cdot oldsymbol{S}
ight)$

- V is the covariance matrix encoding:
 - Data statistical uncertainty: M
 - Flux uncertainty: **B**, **R** (**F**)
 - Cross-section (Xs) uncertainty: **B**, **R** (σ)
 - GEANT4 hadron interaction uncertainty: **B**, **R** (**D**, ε)
 - Detector-model uncertainty: **B**, **R** (**D**, ε)
 - "Dirt" uncertainty: **B**
 - POT uncertainty (2%): M
 - MC statistical uncertainty: M
- The unfolded cross section S_j is defined based on the nominal flux \overline{F}
 - Easy for model comparisons
 - Simple for uncertainty calculation PRD 102 (2020) 113012

Benefit Of the S_i Definition

- Define the flux-averaged cross section using the nominal flux \overline{F} , thus can be easily compared with any model prediction based on the nominal flux
- Simplify the uncertainty calculation
 - Switch \overline{F} to F would bring up complicated systematic correlation
 - Proper treatment of flux shape uncertainty: PRD **102** 113012 \bullet

V is the covariance matrix encoding:

- Data statistical uncertainty: M
- Flux uncertainty: **B**, **R** (**F**)
- Cross-section (Xs) uncertainty: **B**, **R** (σ)
- GEANT4 hadron interaction uncertainty: **B**, **R** (**D**, ε) MC statistical uncertainty: M

$$S_{j} = \frac{\int_{j} \overline{F} \left(E_{\nu j} \right) \cdot \sigma \left(E_{\nu j} \right) \cdot dE_{\nu j}}{\int_{j} \overline{F} \left(E_{\nu j} \right) \cdot dE_{\nu j}}$$

$\boldsymbol{M} - \boldsymbol{B} - \boldsymbol{R} \cdot \boldsymbol{S})^T \cdot \boldsymbol{V}^{-1} \cdot (\boldsymbol{M} - \boldsymbol{B} - \boldsymbol{R} \cdot \boldsymbol{S})$

- Detector-model uncertainty: **B**, **R** (**D**, ε)
- "Dirt" uncertainty: **B**
- POT uncertainty (2%): M

Interaction model systematics are inadequate

Both methods would have specific concerns about bias in the cross section extraction

Full systematics are adequate

Indication of a potential for bias due to the interaction model that the data itself indicates is only realized as a subdominant effect in the cross section extraction (possible Type-II error)

Full systematics are inadequate

Graphic from Matt Toups

Outcome of "pre-data" interaction model fake data tests

Interaction model systematics are adequate

Indication of a potential for bias in the cross section extraction from an unknown source, not necessarily due to the interaction model (possible Type-I error, mitigated if extracting cross sections a function of "directly observable" quantities)

Both methods would not have specific concerns about bias in the cross section extraction

MicroBooNE In-Progress

MicroBooNE In-Progress

