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Introduction to Data Unfolding Problem

• Data unfolding is very general:   

– ν oscillation: x ~ ν mixing parameters, M(y) ~ distribution in recon. ν energy, 𝑑𝑀 ≫ 𝑑𝑆
– Deconvolution: S(x) ~ ionization Q, M(y) ~ raw waveform, 𝑑𝑀 = 𝑑𝑆 in TPC signal processing

– LArTPC (Wire-Cell) Q/L matching:  x ~ Q/L pair, M(y) ~ measured light pattern, 𝑑𝑀 < 𝑑𝑆
– Reactor ҧ𝜈 spectrum:  S(x) ~ true ҧ𝜈 spectrum,  M(y) ~ measured ҧ𝜈 spectrum, 𝑑𝑀 ≥ 𝑑𝑆
– νCC Xs extraction:  S(x) ~ differential Xs,  M(y) ~ measured CC distributions, 𝑑𝑀 ≥ 𝑑𝑆

– … 

– Any physics analysis is essentially a data unfolding problem
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True distribution : S x on variable 𝑥 with dimension 𝑑𝑆
Measured distribution : M y on variable 𝑦 with ത𝑦 = 𝑅(x) and dimension 𝑑𝑀
Unfolding problem is M(y) → S(x)



Special Case of 𝑑𝑀 ≥ 𝑑𝑆 : Weighted Least Squares 

• Since measurements are around the expectation

– 𝑀 = 𝑅 ⋅ 𝑆 + 𝑁→ ෠S = 𝑆 + 𝑅𝑇 ⋅ 𝐶−1 ⋅ 𝑅 −1 ⋅ 𝑅𝑇 ⋅ 𝐶−1 ⋅ 𝑁

– N : statistical and systematic uncertainties
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A. C. Aitken Proc. R. Soc. Edinburgh 55, 42 (1935)

Large fluctuations → Regularization 
(e.g. Wiener-SVD) is needed for 
intuitive results

https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh/article/ivon-least-squares-and-linear-combination-of-observations/7106C26F19F2EBF75BCEE7FA285780B9


Overview: Goals of Data Unfolding

• Reduce difference between unfolded 
results w.r.t. truth ( ෠𝑺 vs. S )

• Wiener-SVD:
– Minimize total mean squared error (MSE 

= bias2 + variance) in the chosen effective 
frequency domain through application of 
the Wiener(-inspired) filter given an 
expected signal

– Complete error estimation (𝛿 መ𝑆)

– Recognize re-smearing matrix AC 

(෠S ~ AC ⋅ S )

• Retain the maximal power to 
differentiate model predictions in 
comparing to unfolded results (P vs. ෠𝑺)

• Auxiliaries of Wiener-SVD:
– Clear definition of S 

(e.g. nominal ν flux weighted Xs)

– Model validation 
(no significant missing uncertainties by 
data/MC consistency)

– Publishing AC matrix ( መ𝑆 𝑣𝑠. 𝐴𝐶 ⋅ 𝑃 )

5



History of Wiener-SVD unfolding

• Wiener-SVD was inspired by LArTPC signal processing 

– B. Baller JINST 12 P07010

– Apply (Fast) Fourier Transformation:  S 𝜔 =
𝑀 𝜔

𝑅 𝜔
−

𝑁 𝜔

𝑅 𝜔
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𝑀(𝑡0) = න

−∞

∞

𝑅 𝑡 − 𝑡0 ⋅ 𝑆 𝑡 𝑑𝑡 + 𝑁 𝑡0

R(ω) M(ω)

https://iopscience.iop.org/article/10.1088/1748-0221/12/07/P07010


Software (Wiener) Filter
• To suppress the noise at the high frequency, a software filter is 

generally needed

• One form of the filter is the Wiener filter
using expectations of signal and noise
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Detector response is replaced by the filter (smearing) function!
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Meaning of Wiener filter

• Wiener filter was determined by minimizing the expectation of 
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𝐸 𝐹 𝜔 ⋅ 𝑀 𝜔 − 𝑆 𝜔
2

= 𝐸 𝐹 𝜔 ⋅ 𝑆(𝜔) + 𝑁(𝜔) − 𝑆 𝜔
2

( )

( ) ( )
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2
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+

M: measurement
ҧ𝑆 : expectation of the signal 

Wiener filter is by construction to minimize the total 
mean squared error (MSE = bias2 + variance) in the frequency domain

How to find a (frequency) 
‘domain’ to maximize 
separating signal and noise?

S

NM

FFT to frequency domain

Apply Wiener Filter

Inverse FFT

መ𝑆

= +



SVD Unfolding

• Start with general chisquare formalism with the covariance matrix

• Whitening of the chisquare

• SVD decomposition of R
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2 1

,

i ik k ij j jk k

i j k k

m r s Cov m r s −   
= −    −    

   
  

m is the measured counts
r is the smearing matrix, 
s is true distribution to be extracted
Cov is the covariance matrix taking into 
account all uncertainties

𝜒2 = 𝑀 − 𝑅 ⋅ 𝑠 2
𝐶𝑜𝑣−1 = 𝑄𝑇 ⋅ 𝑄

𝑀 = 𝑄 ⋅ 𝑚
𝑅 = 𝑄 ⋅ 𝑟

𝑅 = 𝑈 ⋅ 𝐷 ⋅ 𝑉𝑇
Ƹ𝑠 = 𝑉 ⋅ 𝐷−1 ⋅ 𝑈𝑇 ⋅ 𝑀 S 𝜔 =

𝑀 𝜔

𝑅 𝜔

Frequency domainEffective frequency domain determined by 
Cov (uncertainties) and R (response)



Wiener-SVD Unfolding

• Tikhonov regularization

• Wiener regularization
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Ƹ𝑠 = 𝑉 ⋅ 𝐹 ⋅ 𝐷−1 ⋅ 𝑈𝑇 ⋅ 𝑀
M( )

S( ) ( )
R( )

F


 


= 

Regularization strength τ to 
be varied for optimization

Expectation of signal ҧ𝑆 is 
required, no free parameter



Generalized Wiener SVD Approaches
• Instead of using amplitude of s, we can use  1st or 2nd derivative of s
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Different C gives different effective frequency domain, in which has different signal/noise separations!

How to find an effective 
‘domain’ to maximize 
separating signal and noise?

S

NM

FFT to frequency domain

Apply Wiener Filter

Inverse FFT

መ𝑆

= +



Wiener-SVD: Uncertainties and Regularization

• Unfolded results መ𝑆 = 𝑅𝑡𝑜𝑡 ⋅ 𝑚

– with 𝑅𝑡𝑜𝑡 = 𝐴𝐶 ⋅ 𝑅𝑇𝑅 ⋅ 𝑅𝑇 ⋅ 𝑄

• Or መ𝑆 = 𝐴𝐶 ⋅ (𝑆 + 𝑅𝑇𝑅 ⋅ 𝑅𝑇 ⋅ 𝑄 ⋅ 𝑁)

– with 𝐴𝐶 = 𝐶−1𝑉𝐶𝑊𝐶𝑉𝐶𝐶

– Expectation ഥ෡𝑺 = 𝑨𝑪 ⋅ ഥ𝑺 (truth 
expectation)

• Uncertainty of መ𝑆

– 𝐶𝑜𝑣 መ𝑆 = 𝑅𝑡𝑜𝑡 ⋅ 𝐶𝑜𝑣𝑚 ⋅ 𝑅𝑡𝑜𝑡
𝑇

• Regularization language

– Minimizing 𝜙 𝑠 = 𝜒2 𝑠 + 𝑅(𝑠)

• Tikhonov regularization

– 𝑅 𝑠 = 𝜏 ⋅ ׬
𝑑𝑘𝑠

𝑑𝐸𝑘

2

– k=0, 1, 2 ~ amplitudes, slopes, 
smoothness of S 

• Wiener-SVD

– 𝑅 𝑠 =
1

2
σ𝑖 log

𝑀𝑈 𝑖
2

𝑁2
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Signal in the effective 
frequency domain

Noise in the effective 
frequency domain



Key Take-away Points of Wiener-SVD

• Unfolded results are essentially 
ത෠𝑺 = 𝑨𝑪 ⋅ ത𝑺

– No regularization strength τ

– No ad-hoc unfolding uncertainty

• Wiener-SVD needs an input of 
expectation of signal

– By construction, the smallest MSE

• Difference between unfolded results
w.r.t. truth depends on the choice of 
effective frequency domain (e.g. C) 
and the expectation of signal

• Retain the maximal power to 
differentiate model predictions in 

comparing to unfolded results (P vs. ෠𝑺)

– Publish AC, so that it can be applied to the 
predictions for comparison

• Covariance matrix of measurements 
need to accommodate all uncertainties 
→Model validation

– Calibration: use (external) data to replace 
model

– Validation: use (this) data to validate model
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Application: Cross Section Extraction Procedure (I)

• Case study: extraction of total νμCC cross section as neutrino energy
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( ) ( ) ( ) ( ) ( ) ( ),
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: proton on target
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Cross Section Extraction Procedure (II)
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( )

( )

Selected no. of events in reco. energy bin i from true energy bin j after event weights

Generated no. of events in truth energy bin j after event weights
ij =

Can be directly 
calculated with 
existing Monte Carlo 
simulations

A constant for each reco. energy j bin related to POT, T, and nominal flux 

Nominal flux averaged cross section in the truth energy bin j
for pros, also see discussions in L. Koch and S. Dolan PhysRevD.102.113012

This choice is crucial in simplifying the uncertainty calculation and comparisons 
with model calculations 
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.113012


Cross Section Extraction Procedure (III)
• Some of the major uncertainties 

– Flux uncertainties: reweighting from universes → impacts on F and B  and then to M 

– Xs uncertainties: reweighting from universes → impacts on σ and B and then to M 
(different from before, since we are extract Xs here), suppressed in Xs extraction

– Detector uncertainties: bootstrapping method based on dedicated DetVar/CV simulation 
→ impacts on D and ε and then to M, also on B
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:  vector, number of measured events   

:    vector, predicted number of background events

:  vector, nominal flux averaged Xs to be unfolded

:  (known) response matrix connecting M - B, and S

C :

M R S B

M

B

S

R

=  +

 covariance matrix of M

( ) ( )

( )
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1
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                        and

         

:  known new smearing matrix based on 

       Wiener filter and the input Xs model
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−−
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−
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=      

=    

All the derivations are exact with no approximations



Model Validation
• For accelerator neutrino experiments, the validation of 𝐷(𝐸𝜈 → 𝐾)

(K being kinematics variable in measurements) is important!
– Performing measurement in the visible kinematics (e.g. K being lepton angle or lepton energy)  

and true (instead of nominal) neutrino flux does not avoid the problem 

• To compare the unfolded Xs (at true flux) with event generator predictions, 
– Theorists provide their model of 𝐷(𝐸𝜈 → 𝐾)

– The impact of 𝐷(𝐸𝜈 → 𝐾) on the predictions depends on the neutrino spectrum and its 
uncertainties (extrapolation from nominal to true neutrino flux)

– Since unfolded Xs also includes neutrino flux uncertainties, theorists cannot do a fair comparison 
between the unfolded Xs and the predictions without
• Uncertainties of the neutrino flux and spectrum

• Correlation between the neutrino flux uncertainties and unfolded Xs

• If we (experimentalists) do not do our job in validating and including  the model 
uncertainties, it is very difficult, if not impossible, for theorists to take the 
uncertainty of 𝐷(𝐸𝜈 → 𝐾) into account!

17



Model Validation Tools: Goodness-of-Fit Tests
Global/Local GoF Tests

• 𝝌𝟐/ndf calculated from the full 
systematics (flux, Xs, detector, MC 
statistics) and statistics

• Perform decomposition on the Covfull so 
that one can examine deviation on each 
(independent) eigen vectors

– 𝐶𝑜𝑣𝑓𝑢𝑙𝑙 = 𝑄𝑇 ⋅ 𝐷 ⋅ 𝑄 D: diagonal, Q: unitary

– 𝜒2 = [𝑄 ⋅ 𝑀 − 𝑃 𝑇 ⋅ 𝐷−1 ⋅ [𝑄 ⋅ (𝑀 − 𝑃)]

Conditional Constraining Procedure
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Conditional expectation & covariance

𝝁𝑿,𝒀 =
𝝁𝑿
𝝁𝒀

, 𝚺𝑿,𝒀 = (
𝚺𝑿𝑿 𝚺𝑿𝒀
𝚺𝒀𝑿 𝚺𝒀𝒀

)

𝜇𝑌|𝑋 = 𝜇𝑌 + Σ𝑌𝑋Σ𝑋𝑋
−1 𝑋 − 𝜇𝑋

𝚺𝒀|𝑿 = 𝚺𝒀𝒀 − 𝚺𝒀𝑿𝚺𝑿𝑿
−𝟏𝚺𝑿𝒀

𝜒2 =෍

𝑖

𝜒𝑖
2 =෍

𝑖

𝑚𝑖 − 𝑝𝑖
2

𝑑𝑖
2



• New method to validate modeling of neutrino energy
reconstruction given separated lepton and hadronic 
energy measurements
in LArTPC

𝐄𝛎 = 𝐄𝝁 + 𝐄𝐡𝐚𝐝,𝐯𝐢𝐬 + 𝐄𝐡𝐚𝐝,𝐦𝐢𝐬𝐬𝐢𝐧𝐠

Model Validation: M(𝐄had
𝐫𝐞𝐜 ) vs. 𝜇(𝐄had

𝐫𝐞𝐜 | 𝐄𝝂, 𝐄𝛍
𝐫𝐞𝐜)

After Constraint

Overflow
FC

Measured muon kinematics are used to constrain 
the overall model (flux, cross section, etc.) for 
hadronic energy
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Neutrino flux 
modeling Measurement of 

muon kinematics

Before Constraint

Excess at low hadronic 
energy indicates 
mis-modeling of 
missing energy?

Also see N. Nayak’s talk on Wednesday



Summary
• Wiener-SVD, by construction, gives 

the smallest MSE 

– No regularization strength τ

– No ad-hoc unfolding uncertainty

• The quality of Wiener-SVD unfolding depends on the choice of effective 
frequency domain and the input signal expectation

• Retain the maximal power to differentiate model predictions in 
comparing to unfolded results

– Clear definition of S (e.g. nominal ν flux weighted Xs)

– Model validation (no significant missing uncertainties by data/MC comparison)

– Publishing AC matrix (෡𝑺 𝒗𝒔. 𝑨𝑪 ⋅ 𝑷 )
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Unfolded results መ𝑆 = 𝑅𝑡𝑜𝑡 ⋅ 𝑚
with 𝑅𝑡𝑜𝑡 = 𝐴𝐶 ⋅ 𝑅𝑇𝑅 ⋅ 𝑅𝑇 ⋅ 𝑄

Uncertainty of መ𝑆 𝐶𝑜𝑣 መ𝑆 = 𝑅𝑡𝑜𝑡 ⋅ 𝐶𝑜𝑣𝑚 ⋅ 𝑅𝑡𝑜𝑡
𝑇
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Summary of different Apporaches
• Linear Algebra is a very powerful tool in experimental data analysis

– Least square approach: 

– Iterative approach:
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constraint unknown

constraint unknown

i) Matrix Inversion (modest N)

  ii) Numerical Solution (large N)

  iii) Fast Fourier Trans. (Toeplitz)

i) Compressed Sensing L1 reg.

     (Sparsity and Posit

:

  

:

  

N N

N N





ivity info.)

  ii) ML-EM iterative approach

     (Prior and Positivity info.)

Applications Selected Examples

Signal Processing MicroBooNE TPC and Daya Bay PMT 
waveform analysis

Data unfolding EXO-200, Wiener-SVD

Event Reconstruction Wire-Cell 3D imaging, MicroBooNE ν selection

Applications Selected Examples

Numerical solutions Coordinate Descent, BCGSTAB

Data unfolding ML-EM (Bayesian unfold) in NEXT, ν Xs

Reducing bias Iterative Least Weighted Squares

Approx. NL fit Trajectory & dQ/dx fit in LArTPC



Issue of Extracting Xs at Real Flux with FDS

• Incorrect: Not considering the 
neutrino flux uncertainty in 
making predictions

• Flawed: Ignore correlation of flux 
uncertainty between prediction 
and Xs
– Theorists need to learn how to use 

the reported neutrino flux 
uncertainties to extrapolate to real 
flux

• Correct: Consider correlations
– No experiment report such 

correlation so far
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log10(𝜒
2)

Incorrect 

Flawed 

Correct

Expected 𝜒2 Distribution

Comparisons between Xs prediction and extraction 



Sensitivity of Model Validation and Xs Extraction
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• FDS with either different event generators 
or artificially creation all support the 
expectation that the model validation is 
more sensitive to mismodeling than the 
Xs extraction

Conclusion holds for (signal-only) Xs-only systematics and works for other 
systematic uncertainties (flux, detector …)

MicroBooNE in Progress



Outcome of “pre-data” interaction model fake data tests
Interaction model 
systematics are inadequate

Interaction model 
systematics are adequate
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Full systematics 
are inadequate

Full systematics 
are adequate

Both methods would 
have specific concerns 
about bias in the cross 
section extraction

Both methods would not 
have specific concerns 
about bias in the cross 
section extraction

Indication of a potential for bias 
due to the interaction model 
that the data itself indicates is 
only realized as a subdominant 
effect in the cross section 
extraction
(possible Type-II error)

Indication of a potential for bias in 
the cross section extraction from 
an unknown source, not 
necessarily due to the interaction 
model (possible Type-I error, 
mitigated if extracting cross 
sections a function of “directly 
observable” quantities)
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https://arxiv.org/abs/2212.11107
~730 pages of review

https://arxiv.org/abs/2212.11107


About the Role of Event Generator, Model Uncertainties 
and QCD in the non-perturbative region
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