

MicroBooNE CC0TT Tuning

Michael Kirby (BNL/NPPS) for the MicroBooNE Collaboration NuXTract - NuSTEC Workshop - CERN Oct 4, 2023

Motivation for MicroBooNE GENIE Tune

- MicroBooNE physics goals include search for Low-Energy Excess in v_e events and cross section measurements
- Initial MicroBooNE cross section measurements utilized GENIE v2.12.2 to model interactions
- Interaction models were good enough to make measurements without significant biases
- Updated GENIE v3 models show improvement when compared with MiniBooNE data, but still have some deficiencies

Motivation for MicroBooNE GENIE Tune

- Low-Energy Excess searches utilize three important tools
 - selection focused on lowenergy v_e candidates
 - exclusive selection focuses on CCQE and CC2p2h energy region
 - v_µ sideband regions constraints

MicroBooNE 1e1p Deep Learning LEE Search

Reconstructed E_v in 1u1p sideband sample

Phys. Rev. D105, 112003 (2022)

How to tune interaction models?

- Iargest discrepancy in GENIE v2 based measurements at low visible energy

 mostly CCQE and CC2p2h
- nature of LEE searches have dominate backgrounds from CCQE and CC2p2h
- LEE analyses were using v_μ sidebands for constraint, so can't double count by tuning to MicroBooNE data
- considerable datasets from MINERvA, but higher beam energy with different contributions of CCQE, CC2p2h, RES, and DIS
- T2K beam has most similar energy profile and pion-less cross section measurements available

What to tune?

- GENIE v3 G18_10a_02_11a model chosen for central model - updated with (at the time 2020) new models from Valencia Group for CCQE and CC2p2h
- for each model, look to fit the shape and normalization of each to data
- CCQE Axial mass in the dipole form factor (norm and Q² shape), Valencia RPA correction (Q² shape)
- CC2p2h direct absolute normalization and Q² shape variation between Valenica and GENIE Emperical
- some parameters avoided
 - FSI parameters associated with proton
 production
 - Fermi momentum neutrino data doesn't serve as good of a constraint as electron scattering

Q² variation for different RPA correction strengths

What to tune?

- GENIE v3 G18_10a_02_11a model chosen for central model - updated with (at the time 2020) new models from Valencia Group for CCQE and CC2p2h
- for each model, look to fit the shape and normalization of each to data
- CCQE Axial mass in the dipole form factor (norm and Q² shape), Valencia RPA correction (Q² shape)
- CC2p2h direct absolute normalization and Q² shape variation between Valenica and GENIE Emperical
- some parameters avoided
 - FSI parameters associated with proton
 production
 - Fermi momentum neutrino data doesn't serve as good of a constraint as electron scattering

<u>CC2p2h Models</u> Energy transfer vs |momentum transfer|

Tune parameters and variations

	Default GENIE v3 value	Variation	effect
M _A CCQE	0.961242 GeV	free	normalization and Q ² shape CCQE
Valencia RPA Correction	100%	free	normalization and Q ² shape CCQE
CC2p2h Normalization	1	free	normalization CC2p2h
mixture of Valencia and Empriical	0 (Valencia)	0 to 1 (1 = Empirical GENIE)	shape CC2p2h

Fit to T2K data

- published CC0π cross-section data -Phys. Rev. D 93, 112012 (2016)
- binned likelihood fit performed in four signal and two control regions
- 2D differential cross section in muon momentum and angle
- reweighting performed using GENIE reweighting package v1.0.4
- excluded highest muon momentum bin
 - 67 bins -> 58 bins
 - small cross sections and small absolute uncertainties were driving fit results
 - high momentum muons are not a significant part of MicroBooNE dataset
- only diagonal terms from covariance matrix to avoid unphysical results

GENIE v3.0.6 G18_10a_02_11a 115.31/67 bins GENIE v2.12.1 284.31/67 bins MicroBooNE Tune 63.77/67 bins

Final MicroBooNE Tune parameters

	MaCCQE fitted value	CC2p2h Norm. fitted value	CCQE RPA Strength fitted value	CC2p2h Shape fitted value	$\frac{\text{T2K}}{\chi^2_{\text{diag}}/\text{N}_{\text{bins}}}$
Nominal (untuned)	0.961242 GeV	1	100%	0	106.7/58
Fit MaCCQE + CC2p2h Norm.	$1.14\pm0.07~{ m GeV}$	1.61 ± 0.19	100% (fixed)	0 (fixed)	71.8/58
Fit MaCCQE + CC2p2h Norm + CCQE	$1.18\pm0.08~{ m GeV}$	1.12 ± 0.38	$(64 \pm 23)\%$	0 (fixed)	69.7/58
RPA Strength					
Fit MaCCQE + CC2p2h Norm + CCQE	$1.10\pm0.07~{ m GeV}$	1.66 ± 0.19	$(85\pm20)\%$	$1^{+0}_{-0.74}$	52.5/58
RPA Strength + CC2p2h Shape				0.74	

- important cross check is stability of the result when allowing for greater fit variables
- uncertainties shown are post-fit given by MINUIT
- incorporated into MicroBooNE analyses uncertainties

Updated MicroBooNE Model results - Visible Energy in Inclusive v_{μ} Selection

Updated MicroBooNE Model results - Reco Neutrino Energy - v_{μ} 1µ1p Selection

Default GENIE v3 G18_10a_02_11a

MicroBooNE GENIE v3 Tune

Updated MicroBooNE Model results - Inclusive CC v_{μ}

Phys. Rev. Lett. 128, 151801 (2022)

MicroBooNE Tune Uncertainty

	"MicroBooNE tune"				
Parameter	Central value	$+1\sigma$	-1σ		
MaCCQE ^a	1.10 GeV	+0.1 GeV	-0.1 GeV		
RPA_CCQE ^b	85%	+40%	-40%		
Normccmec	166%	+50%	-50%		
XSecShape_CCMEC	Empirical ^c	N/A	Valencia ^d		
Coulomb_CCQE	Nominal	+30%	-30%		
DecayAngMEC	Isotropic	Alternative ^e	N/A		
FracPN_CCMEC	Valencia	+20%	-20%		
FracDelta_CCMEC	Valencia	+30%	-30%		
NormNCMEC	Nominal	+100%	-100%		
ThetaDelta2NRad	Isotropic	Alternative ^e	N/A		
NormCCCOH	Nominal	+100%	-100%		
NormNCCOH	Nominal	Nominal $+100\%$ -100%			

Summary

- "New CC 0π GENIE model tune for MicroBooNE"
 Phys. Rev. D 105 (2022) 7, 072001
- Tuned GENIE v3 with T2K CC0π measurements to produce a theory-motivated tune
- considerable improvement in modeling of CC interactions in MicroBooNE detector
- important development of data driven GENIE interaction uncertainties
- MicroBooNE Tune and uncertainties key component to the initial Low-Energy Excess searches
- Continue to be utilized for additional searches and cross section measurements

backup

MicroBooNE Tune vs MicroBooNE Data

- flux integrated double differential cross section of inclusive v_{μ} CC in muon momentum and angle
- GENIE v3 (χ²full/N_{bins} =105.41/42)
- MicroBooNE Tune ($\chi^{2}_{full}/N_{bins} = 140.55/42$)

Fit to T2K data - alternate method suggested by Koch

- separate the correlations into normalization and shape components when calculating the χ^2
- shown on the plots as Alternate Fit
- fitted parameters were all within reported MINUIT uncertainties
- two χ² varied by less than 10%

parameter correlation matrix

Alternate fit parameters and chi2

	MaCCQE fitted value	CC2p2h Norm. fitted value	CCQE RPA Strength fitted value	CC2p2h Shape fitted value	$\frac{\text{T2K}}{\chi^2_{\text{diag}}/\text{N}_{\text{bins}}}$	$\frac{\text{T2K}}{\chi^2_{\text{Koch}}/\text{N}_{\text{bins}}}$	$\frac{\text{T2K}}{\chi^2_{\text{full}}/\text{N}_{\text{bins}}}$
Nominal (untuned)	0.961242 GeV	1	100%	0	106.7/58	149.83/58	97.56/58
"MicroBooNE tune"	$1.10\pm0.07~{ m GeV}$	1.66 ± 0.19	$(85\pm20)\%$	$1^{+0}_{-0.74}$	52.5/58	110.58/58	103.84/58
"Alternate fit"	$1.04\pm0.10~\text{GeV}$	1.44 ± 0.42	$(67\pm16)\%$	$0.91^{+0.09}_{-0.18}$	55.51/58	100.59/58	91.68/58

GENIE v3 model sets

- events produced through several mechanisms
 - Meson Exchange Currents
 - Short Range Nucleon-Nucleon Correlations
 - Final State Interactions
- events generated with GENIE MicroBooNE Tune (G18_10a_02_11a) form base model set for determining efficiency and cross section extraction
 - QE & MEC tuned to external data

GENIE v3.0.6 Model Set	Nuclear Model	Interaction Model	Final State Interactions
MicroBooNE Tune (G18_10a_02_11a)	LFG	Nieves/Valencia (QE+MEC)	hA2018
G18_02a_00_000	RFG	Llewellyn Smith QE + Empirical MEC	hA2018
G18_10a_02_11a	LFG	Nieves/Valencia (QE+MEC)	hA2018
G21_11b_00_000	LFG	SuSAv2 (QE+MEC)	hN2018

PRD Publication

Obtaining a high-quality interaction model with associated uncertainties is essential for neutrino experiments. In this talk, we present a tune, as published in Phys. Rev. D 105 (2022) 7, 072001, of the charged-current pionless (CC0 π) interaction cross section via the two major contributing theoretical processes—charged-current quasielastic and multinucleon interaction models—within version 3.0.6 of the GENIE neutrino event generator. Four parameters in these models determining normalization and shape are tuned to muon neutrino CC0 π cross section data obtained in 2016 by the T2K experiment, which provides an independent set of neutrino interactions with a neutrino flux in a similar energy range to MicroBooNE's neutrino beam. Furthermore, we discuss future plans related to the development of a pi0-based tuned for the next-generation of our results.

Prospects for the future

- several recent differential measurements pion production explore resonant and DIS production models
- is a new tune justified by new CC 2p2h models?

