Challenges of fitting cross-section data

Peelle's pertinent puzzle

Jaafar Chakrani, Stephen Dolan, Margherita Buizza Avanzini Lawrence Berkeley National Laboratory (LBNL)
jchakrani@lbl.gov

NuXTract Workshop 2023
October $5^{\text {th }}, 2023$

Introduction

- Throughout the workshop, various techniques of cross-section extraction were presented
- Once the cross-section measurement is published, it can be used to benchmark our models from MC generators (NEUT, GENIE, NuWro, ...)
- We find that, almost all the times, the models do not give a good description of the available cross-section data
- We often attempt to tweak the models using theoretically-motivated (or not!) parameters to better describe the data through chi-square fits
- A few recent examples:
- GENIE: Phys. Rev. D 106, 112001, Phys. Rev. D 105, 072001, ... (see talks by Julia and Michael)
- NEUT: arXiv:2308.01838, ...
- NuWro: Phys. Rev. C 102, 015502 (2020), ...

Challenge: models \neq data

- No neutrino MC event generator is able to give a satisfactory description of neutrino-nucleus cross-section data (see TENSIONS 2019 report)*

* This remains true even when we consider uncertainties within the models

Challenge: models \neq data

- No neutrino MC event generator is able to give a satisfactory description of neutrino-nucleus cross-section data (see TENSIONS 2019 report)

* This remains true even when we consider uncertainties within the models

Challenge: models \neq data

- No neutrino MC event generator is able to give a satisfactory description of neutrino-nucleus cross-section data (see TENSIONS 2019 report)

$$
\chi^{2}=\sum_{i j}\left(B_{i}-B_{i}^{\mathrm{MC}}\right) M_{i j}^{-1}\left(B_{j}-B_{j}^{\mathrm{MC}}\right)
$$

Published data: bin content + bin-to-bin covariance

Challenge: models \neq data

- No neutrino MC event generator is able to give a satisfactory description of neutrino-nucleus cross-section data (see TENSIONS 2019 report)

$$
\chi^{2}=\sum_{i j}(B_{i}-\underbrace{\left.B_{i}^{\mathrm{MC}}\right)}_{\text {Bin content predicted by the model }} M_{i j}^{-1}\left(B_{j}-B_{j}^{\mathrm{MC}}\right)
$$

Challenge: models \neq data

- No neutrino MC event generator is able to give a satisfactory description of neutrino-nucleus cross-section data (see TENSIONS 2019 report)

Challenge: models \neq data

- No neutrino MC event generator is able to give a satisfactory description of neutrino-nucleus cross-section data (see TENSIONS 2019 report)

$$
\chi^{2}(\vec{x})=\sum_{i j}\left(B_{i}-B_{i}^{\mathrm{MC}}(\vec{x})\right) M_{i j}^{-1}\left(B_{j}-B_{j}^{\mathrm{MC}}(\vec{x})\right)
$$

- To improve this agreement, we use parameters (knobs/dials) that tweak the model predictions and perform fits to the data

Typical fitting analysis in NUISANCE

Allows us to:

- Add neutrino cross-section data
- Implement custom parameters
- Interact with MC reweight engines
- Compare/fit models to data
- ...
(See talks by Laura and Luke)

Typical fitting analysis in NUISANCE

- Ingredients to fit cross-section data:
- Model

Allows us to:

$$
\chi^{2}(\vec{x})=\sum_{i j}\left(B_{i}-B_{i}^{\mathrm{Mg}}(\vec{x})\right) M_{i j}^{-1}\left(B_{j}-B_{j}^{\mathrm{MC}}(\vec{x})\right)
$$

- Add neutrino cross-section data
- Implement custom parameters
- Interact with MC reweight engines
- Compare/fit models to data
- ...
(See talks by Laura and Luke)

Typical fitting analysis in NUISANCE

- Ingredients to fit cross-section data:

$$
\chi^{2}\left(\vec{x}=\sum_{i j}\left(B_{i}-B_{i}^{\mathrm{MC}}(\vec{x}) M_{i j}^{-1}\left(B_{j}-B_{j}^{\mathrm{MC}} \overrightarrow{\vec{x}}\right)\right.\right.
$$

Allows us to:

- Add neutrino cross-section data
- Implement custom parameters
- Interact with MC reweight engines
- Compare/fit models to data
- ...
(See talks by Laura and Luke)

Typical fitting analysis in NUISANCE

- Ingredients to fit cross-section data:
- Model

- Parameters 0 O 0 ©

- Data (bin content + bin-to-bin correlation)

$$
\left.\left.\chi^{2}(\vec{x})=\sum_{i j} B_{i}-B_{i}^{\mathrm{MC}}(\vec{x})\right) M_{i j}^{-1}-B_{j}-B_{j}^{\mathrm{MC}}(\vec{x})\right)
$$

Allows us to:

- Add neutrino cross-section data
- Implement custom parameters
- Interact with MC reweight engines
- Compare/fit models to data
- ...
(See talks by Laura and Luke)

Typical fitting analysis in NUISANCE

- Ingredients to fit cross-section data:
- Model

- Parameters 0 OOO

- Data (bin content + bin-to-bin correlation)

$$
\chi^{2}(\vec{x})=\sum_{i j}\left(B_{i}-B_{i}^{\mathrm{MC}}(\vec{x})\right) M_{i j}^{-1}\left(B_{j}-B_{j}^{\mathrm{MC}}(\vec{x})\right)
$$

- This chi-square is then minimized as a function of \vec{x}

Allows us to:

- Add neutrino cross-section data
- Implement custom parameters
- Interact with MC reweight engines
- Compare/fit models to data
- ...
(See talks by Laura and Luke)

Peelle's pertinent puzzle (PPP)

Peelle's Pertinent Puzzle

- Peelle's pertinent puzzle in one picture

Peelle's Pertinent Puzzle

- Peelle's pertinent puzzle in one picture

I chose my model (NEUT), implemented a few parameters, and ran a fit in NUISANCE to MINERvA data...

The postfit model I obtain is with a very small normalization!?

Peelle's Pertinent Puzzle

- Peelle's pertinent puzzle in one picture

I chose my model (NEUT), implemented a few parameters, and ran a fit in NUISANCE to MINERvA data...

The postfit model I obtain is with a very small normalization!?

- This is the result of two things:
- "Flawed" model that is unable to perfectly describe the data (even with the introduced free parameters)

Peelle's Pertinent Puzzle

- Peelle's pertinent puzzle in one picture

- This is the result of two things:

- "Flawed" model that is unable to perfectly describe the data (even with the introduced free parameters)
- Highly correlated uncertainties between the bins summarized under Gaussian assumptions

Why does this happen?

- Let's have a look at an example of a 2-bin measurement

Why does this happen?

- Let's have a look at an example of a 2-bin measurement

By eye, the agreement looks quite good, but...

Why does this happen?

- Let's have a look at an example of a 2-bin measurement

By eye, the agreement looks quite good, but... This actually depends on the correlation between the two bins!

correlation $=0.00$	correlation $=0.30$	correlation $=0.80$	correlation $=0.90$	correlation $=0.95$
chi2 $=0.69$	chi2 $=0.98$	chi2 $=3.41$	chi2 $=6.81$	chi2 $=13.62$

Why does this happen?

- In the two-dimensional space of the two bins

Why does this happen?

- In the two-dimensional space of the two bins

Bin 1
Bin 2
Let's introduce now a global normalization parameter N

[^0]

Why does this happen?

- In the two-dimensional space of the two bins

Bin 1
Bin 2
Let's introduce now a global normalization parameter N

[^1]

Why does this happen?

- In the two-dimensional space of the two bins

Bin 1
Bin 2
Let's introduce now a global normalization parameter N

As the correlation increases, the low normalizations are preferred

Why does this happen?

$\operatorname{Bin} 1$
Bin 2
Let's introduce now a global normalization parameter N

As the correlation increases, the low normalizations are preferred

[^2]

Why does this happen?

Why does this happen?

- In the

Let's introduce now a global normalization parameter N

As the correlation increases, the low normalizations are preferred

[^3]With the standard covariance approach, the uncertainty on the shape does not scale with the changes to the normalization
\hookrightarrow The absolute uncertainties are unchanged as a function of the normalization

Norm-shape covariance

- One way to overcome this is building a covariance that keeps the relative uncertainties constant (instead of the absolute)
- This can be satisfied if the covariance is quoted in the "norm" and the "shape" as in:

$$
(\operatorname{Bin} 1, \operatorname{Bin} 2) \rightarrow\left(\operatorname{Bin} 1+\operatorname{Bin} 2, \frac{\operatorname{Bin} 1}{\operatorname{Bin} 1+\operatorname{Bin} 2}\right)
$$

Norm-shape covariance

- One way to overcome this is building a covariance that keeps the relative uncertainties constant (instead of the absolute)
- This can be satisfied if the covariance is quoted in the "norm" and the "shape" as in:

$$
(\operatorname{Bin} 1, \operatorname{Bin} 2) \rightarrow\left(\operatorname{Bin} 1+\operatorname{Bin} 2, \frac{\operatorname{Bin} 1}{\operatorname{Bin} 1+\operatorname{Bin} 2}\right)
$$

Gaussian uncertainties in the

Norm-shape covariance

- One way to overcome this is building a covariance that keeps the relative uncertainties constant (instead of the absolute)
- This can be satisfied if the covariance is quoted in the "norm" and the "shape" as in:

Norm-shape covariance

- One way to overcome this is building a covariance that keeps the relative uncertainties constant (instead of the absolute)
- This can be satisfied if the covariance is quoted in the "norm" and the "shape" as in:

Norm-shape covariance

- One way to overcome this is building a covariance that keeps the relative uncertainties constant (instead of the absolute)
- This can be satisfied if the covariance is quoted in the "norm" and the "shape" as in:

Norm-shape covariance

- One way to overcome this is building a covariance that keeps the relative uncertainties constant (instead of the absolute)
- This can be satisfied if the covariance is quoted in the "norm" and the "shape" as in:

Norm-shape covariance

- One way to overcome this is building a covariance that keeps the relative uncertainties constant (instead of the absolute)
- This can be satisfied if the covariance is quoted in the "norm" and the "shape" as in:

$$
(\operatorname{Bin} 1, \operatorname{Bin} 2) \rightarrow\left(\operatorname{Bin} 1+\operatorname{Bin} 2, \frac{\operatorname{Bin} 1}{\operatorname{Bin} 1+\operatorname{Bin} 2}\right)
$$

- This can be generalized for n bins, with the following transformation:
arXiv:2308.01838

$$
C_{i}=f\left(B_{i}\right)=\left\{\begin{array}{ll}
\alpha \frac{B_{i}}{\sum_{k} B_{k}}, & 1 \leq i \leq n-1 \\
B_{T}=\sum_{k} B_{k}, & i=n
\end{array} \quad N \approx J(f) \times M \times J(f)^{T}\right.
$$

Norm-shape covariance

- One way to overcome this is building a covariance that keeps the relative uncertainties constant (instead of the absolute)
- This can be satisfied if the covariance is quoted in the "norm" and the "shape" as in:

$$
(\operatorname{Bin} 1, \operatorname{Bin} 2) \rightarrow\left(\operatorname{Bin} 1+\operatorname{Bin} 2, \frac{\operatorname{Bin} 1}{\operatorname{Bin} 1+\operatorname{Bin} 2}\right)
$$

- This can be generalized for n bins, with the following transformation:

Jacobian of the
New covariance transformation
$\times M \times J(f)^{T}$

Data release
covariance

Linear approximation as f is non linear

Norm-shape covariance

- One way to overcome this is building a covariance that keeps the relative uncertainties constant (instead of the absolute)
- This can be satisfied if the covariance is quoted in the "norm" and the "shape" as in:

$$
(\operatorname{Bin} 1, \operatorname{Bin} 2) \rightarrow\left(\operatorname{Bin} 1+\operatorname{Bin} 2, \frac{\operatorname{Bin} 1}{\operatorname{Bin} 1+\operatorname{Bin} 2}\right)
$$

- This can be generalized for n bins, with the following transformation:
arXiv:2308.01838
Jacobian of the

- One way to overcome this is building a covariance that keeps the relative uncertainties constant (instead of the absolute)
- This can be satisfied if the covariance is quoted in the "norm" and the "shape" as in:

$$
(\operatorname{Bin} 1, \operatorname{Bin} 2) \rightarrow\left(\operatorname{Bin} 1+\operatorname{Bin} 2, \frac{\operatorname{Bin} 1}{\operatorname{Bin} 1+\operatorname{Bin} 2}\right)
$$

- This can be generalized for n bins, with the following transformation:
arXiv:2308.01838
Jacobian of the

Norm-shape covariance

One way to overcome this is building a covariance that keeps the relative

Data release
Data release
cnvariance
Can be easily
used in
NUISANCE

Is this satisfactory?

- Short answer... no

Is this satisfactory?

- Short answer... no
- The Norm+Shape decomposition is one workaround, but:
- It is an approximate calculation $N \approx J(f) \times M \times J(f)^{T}$
- The choice of assuming Gaussian uncertainties on the norm+shape decomposition is rather arbitrary, the actual distributions should be dictated by the measurement
- Short answer... no
- The Norm+Shape decomposition is one workaround, but:
- It is an approximate calculation $N \approx J(f) \times M \times J(f)^{T}$
- The choice of assuming Gaussian uncertainties on the norm+shape decomposition is rather arbitrary, the actual distributions should be dictated by the measurement
- Other workarounds have been considered in other studies like calculating a shape-only chi-square or even completely removing the bin-to-bin correlations...

Is this satisfactory?

- Short answer... no
- The Norm+Shape decomposition is one workaround, but:
- It is an approximate calculation $N \approx J(f) \times M \times J(f)^{T}$
- The choice of assuming Gaussian uncertainties on the norm+shape decomposition is rather arbitrary, the actual distributions should be dictated by the measurement
- Other workarounds have been considered in other studies like calculating a shape-only
- The bin-to-bin covariance provided by experiments is typically produced by varying all the uncertainties a large number of times, and summarizing the average and the spread
- If these full variations (toys/universes) were to be provided in the data release, it would be possible to test these assumptions and tailor a dedicated test statistic

Conclusion

Conclusion

- Fitting neutrino interaction models to cross-section measurements allows us to test and benchmark our neutrino event generators
- One of the challenges encountered in this procedure is Peelle's pertinent puzzle due to the imperfect models and the Gaussian assumptions of the errors in the data releases
- There are some workarounds that can be done to attempt to mitigate this issue using the published covariances, but...
- An ideal data release would also contain the toys/universes used to propagate the uncertainties so that the full distributions can be accessed and used beyond the simple Gaussian assumptions

[^0]: Jaafar Chakrani (LBNL)

[^1]: Jaafar Chakrani (LBNL)

[^2]: Jaafar Chakrani (LBNL)

[^3]: Jaafar Chakrani (LBNL)

