

Introduction: T2K

Sam Jenkins Margherita Buizza Avanzini

on behalf of the T2K experiment

The T2K experiment

T2K oscillation measurements

Large region of $\boldsymbol{\delta}_{CP}$ values excluded at 3σ CP conservation excluded at 90%

Preference for Normal Ordering 3

Why neutrino cross sections matter for the oscillation analysis?

To extract the **oscillation probability**, we compare the **number of detected neutrino interactions** in the **near detector** to the **far detector**:

$$\frac{N_{events}^{far}(\vec{x})}{N_{events}^{near}(\vec{x})} = \frac{\sigma(E_{\nu}, \vec{x}) \otimes \Phi^{far}(E_{\nu}) \otimes D^{far}(\vec{x}) \otimes P_{osc}(E_{\nu})}{\sigma(E_{\nu}, \vec{x}) \otimes \Phi^{near}(E_{\nu}) \otimes D^{near}(\vec{x})}$$

Event rates determined by the **neutrino interaction probability** (cross section), the **neutrino flux** and the **detector effects.** Any uncertainties on these quantities will affect the predictions of N^{far} and N^{near} and thus the precision of the oscillation probability measurements

In the 2022 T2K oscillation analysis: total systematic uncertainty of 5.2% (v_e appearance in neutrino mode), ~4% comes from the uncertainty on neutrino interaction processes

Currently in T2K the dominant systematics come from uncertainty on neutrino cross sections ⇒ let's measure neutrino cross sections @T2K near detectors!

NOTE: today not the major problem, we have ~100 v_{p} appearance events... but this will become a problem for HK (where we expect more than 2000 v_{p} appearance events) 4

T2K cross-section measurements

T2K near detector complex allows to measure neutrino cross sections:

- at **different off-axis**, i.e. different energies
- on different targets: Carbon, Oxygen, Iron,...
- with different samples: v_{μ} , \overline{v}_{μ} , v_{e} , \overline{v}_{e}
- spanning different final state topology (CC0pi, CC0pi1p, CC1pi, CC1pi1p,...)
- limiting model dependence ⇒ this provide stable and long-lived results supported by sophisticated data release
- So far >20 publications: 6 CC-Inclusive, 3 v_e, 12 CC0pi, 4 CC1pi₅

What T2K xsec measurements can teach to HK and DUNE?

(same as SK) and the energy

dependence of xsec

Previous focus on dedicated CC0pi measurements, the most abundant channel in T2K (12 publications + 5 ongoing). Sophisticated systematics model developed for the oscillation analysis (based on spectral function)

Now moving to characterise the CC1pi channel, the 2nd most abundant in T2K (4 publications + 5 ongoing) - known to be mismodeled

Expecting even more exciting measurements thanks to the ND280-Upgrade and WAGASCI/BabyMIND!

HK - same neutrino beam, same near detectors (to begin with), same far detector technology ⇔ obvious synergy!

DUNE - different spectra and target, but **T2K** characterisation and parameterisation of CC0pi and CC1pi interactions can be beneficial. We expect increased sensitivity to the hadronic system with the ND280 upgrade (also neutrons!). Also, xsec extraction techniques and tools could help. 6

What T2K is going to discuss during this workshop?

Tuesday morning: cross section extraction method (unfolding)		
Cross-section extraction using template fitting in T2K cross-section measurements	Margherita Buizza Avanzini et al.	
500/1-001 - Main Auditorium, CERN	11:30 - 11:50	
Binned log-likelihood template fitting with T2K	Nick Latham	
500/1-001 - Main Auditorium, CERN	12:00 - 12:15	
Tuesday afternoon: looking forward ND280 Upgrade (forward folding?))	

Unbiased reconstruction of calorimetric variables in cross-section analyses	Katharina Lachner
31/3-004 - IT Amphitheatre, CERN	14:25 - 14:40

Thursday morning: dealing with the efficiency correction

Dealing with high dimensional efficiency corrections in T2K's cross-section measurements	Sam Jenkins et al.
222/R-001, CERN	09:00 - 09:20

+ a series of other T2K collaborators giving more general or theory-related talks