An Introduction to ProtoDUNE-SP

Richie Diurba (Bern) for the DUNE Collaboration NuXTract 2023

UNIVERSITÄT

Introduction to ProtoDUNE-SP

Overview of ProtoDUNE-SP

- ProtoDUNE Single Phase (SP) is the first "full-scale" engineering test of DUNE Far Detector Module 1.
- Liquid argon time projection chamber with 700 tons of argon.
- Took two months of beam data-taking from September to November 2018.
 - Beam used to measure hadron-Ar cross sections.
 - See status of all work in the <u>CERN report</u>.
- ProtoDUNE-SP has published five papers on its performance:
 - Detector performance (<u>JINST 15 P12004</u>)
 - Design and operation (<u>JINST 17 P01005</u>)
 - Track/shower separation using a CNN (<u>EPJC 82 903</u>)
 - Michel electron reconstruction (<u>*Phys. Rev. D* 107</u>, 092012)
 - Reconstruction of cosmic/beam using Pandora (<u>EPJC 83 618</u>)

Diagram of the operating principle for liquid argon time projection chambers (TPCs). (arXiv:2002.03005)

ProtoDUNE-SP has surpassed technical specifications of DUNE FD Design Requirements (<u>JINST 15 P12004</u>):

Detector parameter	ProtoDUNE-SP performance	DUNE specification	
Average drift electric field	500 V/cm	250 V/cm (min)	
		500 V/cm (nominal)	
LAr e-lifetime	> 20 ms	> 3 ms	
TPC+CE			
Noise	(C) 550 e, (I) 650 e ENC (raw)	< 1000 e ENC	
Signal-to-noise (SNR)	(C) 48.7, (I) 21.2 (w/CNR)		
CE dead channels	0.2%	< 1%	
PDS light yield	1.9 photons/MeV	> 0.5 photons/MeV	
	(@ 3.3 m distance)	(@ cathode distance — 3.6 m)	
PDS time resolution	14 ns	< 100 ns	

ProtoDUNE-SP Cross Sections

- CERN NP provided a hadron beam originating from SPS (*Phys. Rev. Accel. Beams* 22, 061003).
- Operate as a traditional test beam experiment to measure how hadrons travel through argon using.

ProtoDUNE-SP in the Future

- Final state interactions (FSI) and secondary interactions (SI) systematic uncertainties present challenges for meas. like T2K's oscillation analyses.
 - Can tune and constrain these uncertainties with real data.
- Identifying secondary interactions and "vetoing" events to clean sample of events where E_{vis.}!=E_{had.} due to secondary interactions.

Common reweight software for FSI and SI: <u>GENIERW</u> and <u>Geant4RW</u>.

FSI and SI Examples:

- <u>Tuning to world pion data (used by T2K)</u>
- <u>Exploring cascades</u> with alternative models and data.

Final-state interactions

MFP_pi	hA2018	+20%	-20%
MFP_N	hA2018	+20%	-20%
FrCEx_pi	hA2018	+50%	-50%
FrInel_pi	hA2018	+40%	-40%
FrAbs_pi	hA2018	+30%	-30%
FrPiProd_pi	hA2018	+20%	-20%
FrCEx_N	hA2018	+50%	-50%
FrInel_N	hA2018	+40%	-40%
FrAbs_N	hA2018	+20%	-20%
FrPiProd_N	hA2018	+20%	-20%

Final state interaction modeling uncertainties suggested for <u>GENIE</u> using GENIERW.

MFP="Mean Free Path"

What is Being Presented at NuSTEC

- Work-in-progress analyses for ProtoDUNE-SP with focuses on the methods used to extract the cross sections.
 - Richie Diurba: <u>Unfolding two</u> <u>histograms</u> to measure a K⁺-Ar total inelastic cross section
 - Jake Calcutt: Abs+CeX+Other π+-Ar total inelastic cross section using a <u>likelihood fitter</u>.
 - Yinrui Liu: <u>Multi-dimensional</u> <u>unfolding</u> to be used for π+-Ar total inelastic cross section.
- All talks emphasize how the measurements are made and what tools and pitfalls exist.

