# Experience using GPUs for ATLAS Z finder algorithm

Second International Workshop for Future Challenges in Tracking and Trigger Concepts

#### Phil Clark on behalf of the ATLAS collaboration

University of Edinburgh

7th July 2011



GPGPUs GPU Projects at Edinburgh Project Resources ATLAS Trigger

### General Purpose GPUs

- GPU architectures are designed for running thousands of threads in parallel.
- Little additional overhead from running many threads.
- Suited to problems which can be performed in a data parallel manner.
- APIs allow the *host* to manage the GPU *device*.
- Several APIs and SDKs can be used for GPGPU programming: *Nvidia CUDA, OpenCL, AMD/ATI stream SDK.*

#### Where to start?

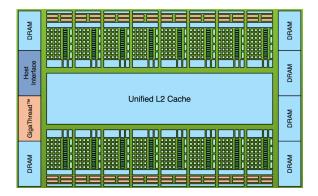
Nvidia CUDA zone

イロト イポト イヨト イヨト

GPGPUs GPU Projects at Edinburgh Project Resources ATLAS Trigger

### "Fermi" GPU Images from Gernot Ziegler, Nvidia





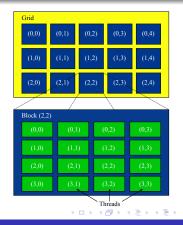
GPGPUs GPU Projects at Edinburgh Project Resources ATLAS Trigger

### CUDA Kernels and Thread Hierarchy

#### CUDA kernel

MyKernel <<< numBlocks, threadsPerBlock >>> (A, B, C);

- A CUDA kernel is a function which is executed in parallel by a number of threads on the GPU device.
- A thread block is a set of threads which execute together on a single multiprocessor.
- Thread blocks can be arranged into a one or two dimensional grids.



GPU Computing Z Finder GPU Projects at Edinbur Kalman Filter Project Resources Summary ATLAS Trigger

### GPU memory

 CUDA devices contain different types of memory, each with their own properties.

| Memory Type    | Size              | Use                                                         |
|----------------|-------------------|-------------------------------------------------------------|
| Global         | 1GB+              | Main memory storage on the GPU.                             |
| Shared         | 16/48KB (block)   | Allows data to be shared between threads in the same block. |
| Registers      | 16/32KB (MP)      | Stores kernel variable data (for each thread).              |
| Local          | 16/512KB (thread) | Overflow for thread variable storage.                       |
| Constant       | 64KB              | Automatically cached, read only.                            |
| Texture Memory | 6-8KB (MP)        | Streaming fetches with a constant latency.                  |

э

GPGPUs GPU Projects at Edinburgh Project Resources ATLAS Trigger

### GPU Projects at Edinburgh

- Number of GPU related projects at Edinburgh
- Chris Jones "Porting the Z finder algorithm to GPU" (MSc in High Performance Computing)
- Maria Rovatsou "SIMT design of the High Level Trigger Kalman Fitter" (MSc School of Informatics)
- James Henderson "An Investigation Into Particles Tracking and Simulation Algorithms using GPUs"
- Project reports and source code available at: ATLAS Edinburgh GPU Computing

イロト イポト イヨト イヨト

GPGPUs GPU Projects at Edinburgh Project Resources ATLAS Trigger

### **Project Resources**

- Access to a number of dedicated GPUs with different architectures (*Tesla* and *Fermi*).
- CUDA code based on CUDA version 1.3



Image: A mathematical states of the state

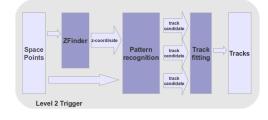
| Properties      | Tesla C1060 | GeForce GTX 470 | Tesla C2050 (x4) |
|-----------------|-------------|-----------------|------------------|
| CUDA Capability | 1.3         | 2.0             | 2.0              |
| Global Memory   | 4.3GB       | 1.3GB           | 2.8GB            |
| Multiprocessors | 30          | 14              | 14               |
| Cores           | 240         | 448             | 448              |
| Threads/block   | 512         | 1024            | 1024             |

GPU Computing Z Finder Kalman Filter Summary ATLAS Trigger

### The ATLAS Trigger



- Level 1: Custom built hardware with special processor units.
- Level 2: Software trigger operating independently on detector regions of interest (Rols).
- Event filter (Level 3): Software trigger analysing whole event signatures.

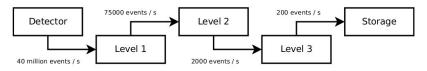


・ロト ・ ア・ ・ ヨト ・ ヨト

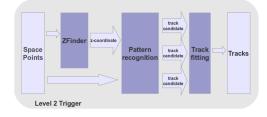
э

GPU Computing Z Finder Kalman Filter Summary ATLAS Trigger

### The ATLAS Trigger



- Level 1: Custom built hardware with special processor units.
- Level 2: Software trigger operating independently on detector regions of interest (Rols). Ideal for GPGPUs
- Event filter (Level 3): Software trigger analysing whole event signatures.



・ロット (雪) ( ) ( ) ( ) ( )

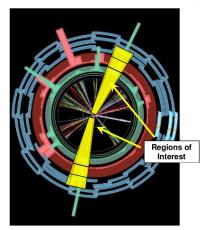
э

GPU Motivation Algorithm and Test case Z Finder Kernel Timing Results

### Z Finder GPU Motivation



- Already break an event up into regions of interest (ROIs) for distributed processing.
- Break ROIs into slices of φ and process independently.



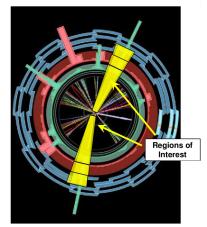
Cross section view of the ATLAS detector

GPU Motivation Algorithm and Test case Z Finder Kernel Timing Results

### Z Finder GPU Motivation



- Already break an event up into regions of interest (ROIs) for distributed processing.
- Break ROIs into slices of φ and process independently.
- Candidate for parallelisation using GPUs.



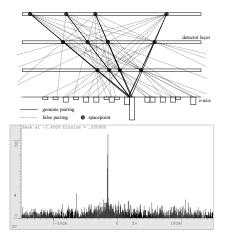
Cross section view of the ATLAS detector

GPU Motivation Algorithm and Test case Z Finder Kernel Timing Results

### The Z Finder Algorithm

$$z_V$$
 calculation  
 $z_V = rac{Z_2 \cdot \rho_1 - Z_1 \cdot \rho_2}{\rho_1 - \rho_2}$ 

- Process each combination of spacepoints and extrapolate back to the beam line.
- The histogram peak is the chosen interaction point.



A B A B
A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

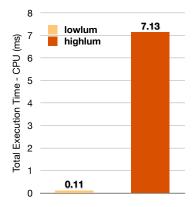
GPU Computing GPU Motivation Z Finder Algorithm and Test case Kalman Filter Z Finder Kernel Summary Timing Results

### Z Finder Test Case

- Standalone version of Z finder code used for feasibility studies with CUDA.
- Initially optimised for calculating z<sub>V</sub> using pairs of spacepoints.
- Timing performance measured using two samples of simulated events.

| Luminosity ( $cm^{-2}s^{-2}$ ) |  |
|--------------------------------|--|
| Number of spacepoints          |  |

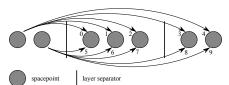
| owlum                | highlum                      |  |
|----------------------|------------------------------|--|
| O(10 <sup>32</sup> ) | <i>O</i> (10 <sup>34</sup> ) |  |
| 333                  | 8104                         |  |

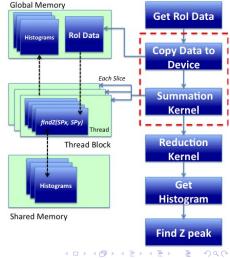


GPU Motivation Algorithm and Test case Z Finder Kernel Timing Results

### Z Finder Kernel: Histogram Summation

- Single thread per  $\phi$  slice.
- Thread block per  $\phi$  slice.
- Histogram per thread block in shared memory.
- Improve spacepoint pair allocation method.

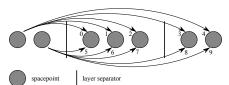


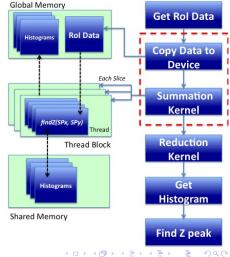


GPU Motivation Algorithm and Test case Z Finder Kernel Timing Results

### Z Finder Kernel: Histogram Summation

- Single thread per  $\phi$  slice.
- Thread block per  $\phi$  slice.
- Histogram per thread block in shared memory.
- Improve spacepoint pair allocation method.

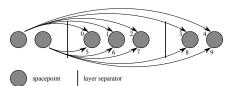


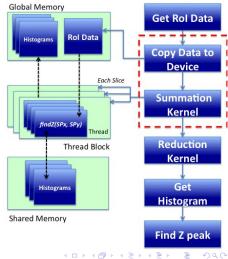


GPU Motivation Algorithm and Test case Z Finder Kernel Timing Results

### Z Finder Kernel: Histogram Summation

- Single thread per  $\phi$  slice.
- Thread block per  $\phi$  slice.
- Histogram per thread block in shared memory.
- Improve spacepoint pair allocation method.

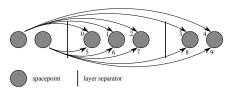


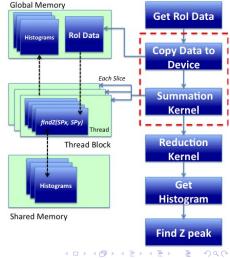


GPU Motivation Algorithm and Test case Z Finder Kernel Timing Results

### Z Finder Kernel: Histogram Summation

- Single thread per  $\phi$  slice.
- Thread block per  $\phi$  slice.
- Histogram per thread block in shared memory.
- Improve spacepoint pair allocation method.

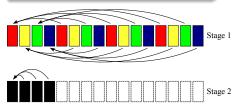


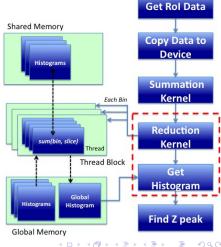


GPU Motivation Algorithm and Test case Z Finder Kernel Timing Results

### ZFinder Kernel: Histogram Combination

- Combine histograms on the GPU ⇒ reduce device to host data transfer by ~500x.
- Reduce the data to a single histogram in multiple steps.

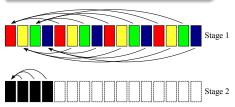


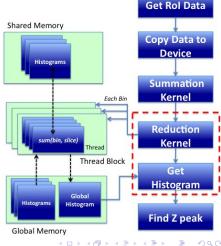


GPU Motivation Algorithm and Test case Z Finder Kernel Timing Results

### ZFinder Kernel: Histogram Combination

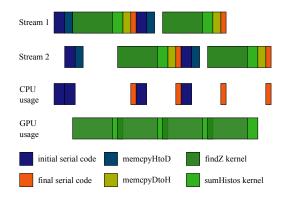
- Combine histograms on the GPU ⇒ reduce device to host data transfer by ~500x.
- Reduce the data to a single histogram in multiple steps.





GPU Motivation Algorithm and Test case Z Finder Kernel Timing Results

### Z Finder Kernel: CUDA Streams

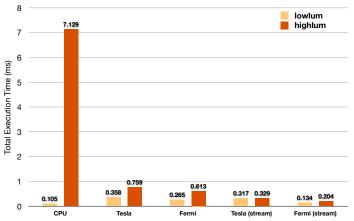


- Each Rol calculation independent  $\Rightarrow$  use CUDA streams.
- Successful in disguising any host to device transfer latency.

ъ

GPU Computing GPU Motivation **Z** Finder Algorithm and Test case Kalman Filter Z Finder Kernel Summary Timing Results

### **Timing Results**

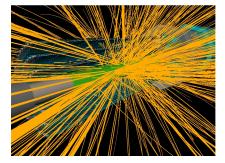


Results for spacepoint pairs show up to 35x speed-up (Fermi).

• Initial results for spacepoint *triplets* also show speed-up.

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Kalman Filter GPU Motivation



• Potentially *thousands* of tracks to reconstruct for every event in the trigger.

 Significant acceleration possible by reconstructing one track per GPU thread.

#### GPU benefits at other experiments

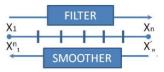
- Kalman Filter port to CUDA (GSI Scientific Report 2008, FAIR-EXPERIMENTS-38)
- ALICE TPC HLT code GPU based / future PANDA TPC code
- GPUs to be used for STS (Silicon Tracking System) within CBM (Compressed Baryonic Matter) experiment at FAIR/GSI.

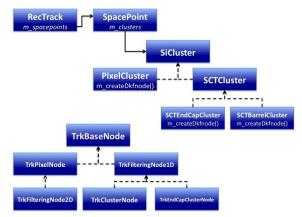
(日)

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Track Reconstruction in ATLAS

- Tracks reconstructed using the Kalman filter method.
- The trajectory of a track is predicted using detector hits as input.
- Backward smoothing filter applied after final Kalman Filter estimation.





#### C++ Class Hierarchy of Track Objects

ヘロア ヘビア ヘビア・

ъ

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Kalman Filter for CUDA

#### **Initial Complications**

- Class inheritance structure captures filter specialism for each sub-detector.
- Dynamic creation of objects in the main routine.
- Track state retention at each filtering step.
- Break down main routine for a smaller kernel.

#### Feasibility Studies (Maria Rovatsou)

- Standalone version successfully ported to C.
- Pre-allocated memory needed for track objects.
- Promising results ⇒ memory footprint per track needs to be reduced.



GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Kalman Filter for CUDA

#### **Initial Complications**

- Class inheritance structure captures filter specialism for each sub-detector.
- Dynamic creation of objects in the main routine.
- Track state retention at each filtering step.
- Break down main routine for a smaller kernel.

#### Feasibility Studies (Maria Rovatsou)

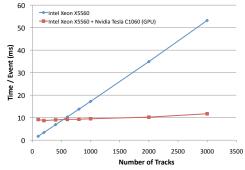
- Standalone version successfully ported to C.
- Pre-allocated memory needed for track objects.
- Promising results ⇒ memory footprint per track needs to be reduced.



GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

#### Kalman Filter for CUDA D. Emeliyanov (first results)

- Standalone version successfully ported to C.
- Structs of arrays used to store track data.
- Vector data types (e.g. *float4*) for compact representation of data.
- One GPU thread per track.
- Modification of smoothing algorithm required for single precision arithmetic.



Muon tracks,  $p_T$ =10GeV, full MC simulation

イロト イポト イヨト イヨト

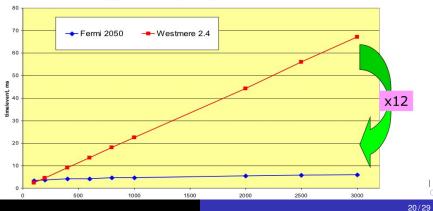
• Over 5x speed-up seen at 3000 tracks.

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Kalman Filter for CUDA

D. Emeliyanov (latest results)

- CPU: Intel Westmere 2.4 GHz, GPU: NVIDIA Tesla C2050 (Fermi arch.)
- Data: full ATLAS Monte Carlo simulation
  - muon tracks,  $p_T = 10 \text{ GeV}$ , arranged into "events" with N tracks up to 3000

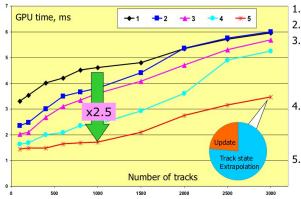


GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Kalman Filter Optimisations

D. Emeliyanov (latest results)

- A set of optimizations has been applied
- Optimised code gives ~20x speed-up w.r.t. the CPU



- Original code
- 2. 32 threads/block
- Reduced memory footprint (fewer local variables, upper-triangular covariance matrix
- Track state (cov. + parameters) stored in fast ("shared") memory
- 5. Jacobian in "shared" memory to speed-up  $JCJ^{-T}$  calculation

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Where is most HEP CPU consumed?

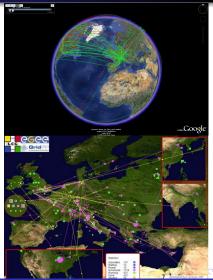
After triggering the LHC experiments still produce vast amounts of data!

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Where is most HEP CPU consumed?

After triggering the LHC experiments still produce vast amounts of data! We developed worldwide LHC computing grid infrastructure

- Approximately 15 PB of data recorded per annum
- Currently >100,000 processors across Grid
- 130 sites in 34 countries



GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Where is most HEP CPU consumed?

After triggering the LHC experiments still produce vast amounts of data! We developed worldwide LHC computing grid infrastructure

- Approximately 15 PB of data recorded per annum
- Currently >100,000 processors across Grid
- 130 sites in 34 countries

Geant4 simulation of detector response ( $\sim$  1000 cpu seconds per event)



GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Where is most HEP CPU consumed?

After triggering the LHC experiments still produce vast amounts of data! We developed worldwide LHC computing grid infrastructure

- Approximately 15 PB of data recorded per annum
- Currently >100,000 processors across Grid
- 130 sites in 34 countries

Geant4 simulation of detector response ( $\sim$  1000 cpu seconds per event)

Up to ten million events simulated daily

G4 failure rate is less than 10<sup>-6</sup>



GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Particle tracking in a magnetic field

Preliminary GPGPU test case study

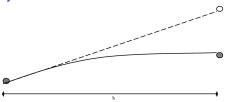


GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

Particle tracking in a magnetic field

Preliminary GPGPU test case study

• Tracking charged particles in the magnetic field



< ロ > < 同 > < 三 >

.⊒...>

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

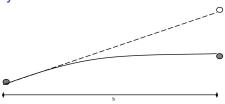
### Particle tracking in a magnetic field

#### Preliminary GPGPU test case study

- Tracking charged particles in the magnetic field
- Lorentz force (perpendicular to plane of magnetic field)

$$\mathbf{F} = m\mathbf{a} = q \cdot (\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

$$rac{d\mathbf{v}}{dt} = \mathbf{a} = rac{q}{m} \cdot (\mathbf{E} + \mathbf{v} imes \mathbf{B})$$



GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Particle tracking in a magnetic field

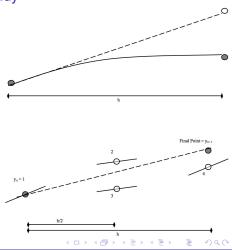
#### Preliminary GPGPU test case study

- Tracking charged particles in the magnetic field
- Lorentz force (perpendicular to plane of magnetic field)

$$\mathbf{F} = m\mathbf{a} = q \cdot (\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

$$rac{d\mathbf{v}}{dt} = \mathbf{a} = rac{q}{m} \cdot (\mathbf{E} + \mathbf{v} imes \mathbf{B})$$

 Solve the differential equation with 4th order Runge Kutta Integration (called "Stepper" algorithm)



GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Steppers

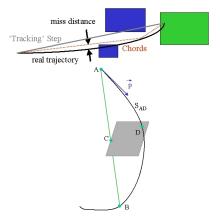
Steppers (EM field integration steps) Various performance requirements:

- Miss Distance (chord sagitta),
- Boundary Intersection Error,
- Tolerable Integration Error, ...

Lots of simulation time was spent on field calls...

Introduced adaptive stepper & caching Different steppers:

- G4ClassicalRK4 (EM field map: 10 calls per step)
- AtlasRK4 (EM field map:2 calls per step



GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Acceleration with GPGPUs

Studied GPU acceleration of the standard 4th order Runge-Kutta (G4ClassicalRK4)

- Using the GPGPU, pre-calculated a "look-up" table of derivative calculations for a space point matrix
  - Calculation time not a limiting factor (abandoned this idea)
  - Also lost accuracy due to rounding to nearest look up point

イロト イポト イヨト イヨト

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Acceleration with GPGPUs

Studied GPU acceleration of the standard 4th order Runge-Kutta (G4ClassicalRK4)

- Using the GPGPU, pre-calculated a "look-up" table of derivative calculations for a space point matrix
  - Calculation time not a limiting factor (abandoned this idea)
  - Also lost accuracy due to rounding to nearest look up point
- Increased calculation complexity to use adaptive stepping
  - Adjusting step size to be within an error tolerance
  - Still slower than the CPU...

イロト イ理ト イヨト イヨト

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Acceleration with GPGPUs

Studied GPU acceleration of the standard 4th order Runge-Kutta (G4ClassicalRK4)

- Using the GPGPU, pre-calculated a "look-up" table of derivative calculations for a space point matrix
  - Calculation time not a limiting factor (abandoned this idea)
  - Also lost accuracy due to rounding to nearest look up point
- Increased calculation complexity to use adaptive stepping
  - Adjusting step size to be within an error tolerance
  - Still slower than the CPU...
- Treated x,y,z coordinates in parallel (3 threads in block)
  - Cross-product ( $\textbf{v} \times \textbf{B})$  calculation needs perp. coordinates
  - Set up the threads in the block to use shared memory
  - Speed was now closer to CPU

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

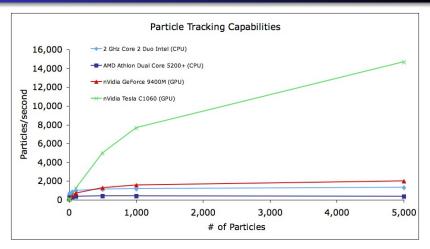
### Acceleration with GPGPUs

Studied GPU acceleration of the standard 4th order Runge-Kutta (G4ClassicalRK4)

- Using the GPGPU, pre-calculated a "look-up" table of derivative calculations for a space point matrix
  - Calculation time not a limiting factor (abandoned this idea)
  - Also lost accuracy due to rounding to nearest look up point
- Increased calculation complexity to use adaptive stepping
  - Adjusting step size to be within an error tolerance
  - Still slower than the CPU...
- Treated x,y,z coordinates in parallel (3 threads in block)
  - $\bullet~$  Cross-product ( $\textbf{v}\times\textbf{B})$  calculation needs perp. coordinates
  - Set up the threads in the block to use shared memory
  - Speed was now closer to CPU
- Next stage was to do many particle tracks in parallel...

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### Magnetic Field Integration results

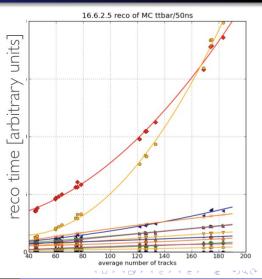


Rapidly achieved a factor 32 speedup (more in progress)

GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

### **Reconstruction: Tracking**

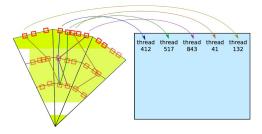
- Reconstruction time depends on multiplicity in the detector
- Track finding has worst combinatorial behaviour (expected) and starts to dominate already at modest multiplicities.



GPU Motivation Track Reconstruction in ATLAS Kalman Filter for CUDA

## Reconstruction: Tracking

- Initial prototyping of tracking on GPUs being done
- Single thread for each combination in every segment combination
- Assigns GPU-global hit data via thread index
- Preliminary results are showing GPU is at least 10 times faster than CPU



イロト イ押ト イヨト イヨト



### Summary

- The ATLAS trigger, particle tracking & simulation algorithms are key areas where GPUs can be used to improve performance.
- Significant enhancements to the trigger and reconstruction algorithms could prove invaluable for dealing with the rates from the LHC upgrade.
- Observed an initial *32x* speed-up for parallel Runge Kutta integration.
- Best case optimisation of 35x speed-up for the Z Finder routine.
- Port of OO-based Kalman Filter algorithm showed GPU acceleration is feasible and scales to thousands of tracks.
- For much more information please see the talks at the recent workshop Future computing for Particle Physics