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General Purpose GPUs

GPU architectures are designed for running thousands of
threads in parallel.

Little additional overhead from running many threads.

Suited to problems which can be performed in a data parallel
manner.

APIs allow the host to manage the GPU device.

Several APIs and SDKs can be used for GPGPU programming:
Nvidia CUDA, OpenCL, AMD/ATI stream SDK.

Where to start?
Nvidia CUDA zone
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"Fermi" GPU
Images from Gernot Ziegler, Nvidia
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CUDA Kernels and Thread Hierarchy

CUDA kernel
MyKernel <<< numBlocks, threadsPerBlock >>> (A, B, C);

A CUDA kernel is a function
which is executed in parallel
by a number of threads on
the GPU device.

A thread block is a set of
threads which execute
together on a single
multiprocessor.

Thread blocks can be
arranged into a one or two
dimensional grids.

Grid

Block (2,2)

(0,0) (0,1) (0,2) (0,3) (0,4)

(1,0) (1,1) (1,2) (1,3) (1,4)

(2,0) (2,1) (2,2) (2,3) (2,4)

Threads

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

4 / 29



GPU Computing
Z Finder

Kalman Filter
Summary

GPGPUs
GPU Projects at Edinburgh
Project Resources
ATLAS Trigger

GPU memory

CUDA devices contain different types of memory, each with their
own properties.

Memory Type Size Use

Global 1GB+ Main memory storage on the GPU.

Shared 16/48KB (block) Allows data to be shared between
threads in the same block.

Registers 16/32KB (MP) Stores kernel variable data (for each
thread).

Local 16/512KB (thread) Overflow for thread variable storage.

Constant 64KB Automatically cached, read only.

Texture Memory 6-8KB (MP) Streaming fetches with a constant
latency.
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GPU Projects at Edinburgh

Number of GPU related projects at Edinburgh

Chris Jones - "Porting the Z finder algorithm to GPU"
(MSc in High Performance Computing)
Maria Rovatsou - "SIMT design of the High Level Trigger
Kalman Fitter" (MSc School of Informatics)
James Henderson - "An Investigation Into Particles
Tracking and Simulation Algorithms using GPUs"

Project reports and source code available at:
ATLAS Edinburgh GPU Computing
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https://twiki.cern.ch/twiki/bin/viewauth/MainAtlasEdinburghGPUComputing
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Project Resources

Access to a number of
dedicated GPUs with different
architectures (Tesla and
Fermi).

CUDA code based on CUDA
version 1.3

Properties Tesla C1060 GeForce GTX 470 Tesla C2050 (x4)
CUDA Capability 1.3 2.0 2.0
Global Memory 4.3GB 1.3GB 2.8GB
Multiprocessors 30 14 14
Cores 240 448 448
Threads/block 512 1024 1024
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The ATLAS Trigger

Level 1: Custom built
hardware with special
processor units.

Level 2: Software trigger
operating independently on
detector regions of interest
(RoIs).

Event filter (Level 3):
Software trigger analysing
whole event signatures.

8 / 29



GPU Computing
Z Finder

Kalman Filter
Summary

GPGPUs
GPU Projects at Edinburgh
Project Resources
ATLAS Trigger

The ATLAS Trigger

Level 1: Custom built
hardware with special
processor units.

Level 2: Software trigger
operating independently on
detector regions of interest
(RoIs). Ideal for GPGPUs

Event filter (Level 3):
Software trigger analysing
whole event signatures.
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Z Finder GPU Motivation

Already break an event up into
regions of interest (ROIs) for
distributed processing.
Break ROIs into slices of φ and
process independently.

Candidate for parallelisation
using GPUs.

Cross section view of the ATLAS detector
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The Z Finder Algorithm

zV calculation

zV =
z2 · ρ1 − z1 · ρ2

ρ1 − ρ2

Process each combination of
spacepoints and extrapolate
back to the beam line.

The histogram peak is the
chosen interaction point.

z-axis

detector layer

genuine pairing

false pairing spacepoint
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Z Finder Test Case

Standalone version of Z finder code used
for feasibility studies with CUDA.

Initially optimised for calculating zV using
pairs of spacepoints.

Timing performance measured using two
samples of simulated events.

lowlum highlum
Luminosity (cm−2s−2) O(1032) O(1034)
Number of spacepoints 333 8104 0

1

2

3

4

5

6

7

8

7.13

0.11

To
ta

l E
x
e
c
u

ti
o

n
 T

im
e
 -

 C
P

U
 (
m

s)

lowlum
highlum

11 / 29



GPU Computing
Z Finder

Kalman Filter
Summary

GPU Motivation
Algorithm and Test case
Z Finder Kernel
Timing Results

Z Finder Kernel: Histogram Summation

Code Iterations

Single thread per φ slice.

Thread block per φ slice.

Histogram per thread block in
shared memory.

Improve spacepoint pair
allocation method.

0 1 2 3 4

5 6 7 8 9

spacepoint layer separator
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ZFinder Kernel: Histogram Combination

Code Iterations

Combine histograms on the
GPU⇒ reduce device to host
data transfer by ∼500x.

Reduce the data to a single
histogram in multiple steps.

Stage 1

Stage 2
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Z Finder Kernel: CUDA Streams

Stream 1

Stream 2

CPU
usage

GPU
usage

initial serial code

final serial code

memcpyHtoD

memcpyDtoH

findZ kernel

sumHistos kernel

Each RoI calculation independent⇒ use CUDA streams.

Successful in disguising any host to device transfer latency.
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Timing Results
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Results for spacepoint pairs show up to 35x speed-up (Fermi).

Initial results for spacepoint triplets also show speed-up.

15 / 29



GPU Computing
Z Finder

Kalman Filter
Summary

GPU Motivation
Track Reconstruction in ATLAS
Kalman Filter for CUDA

Kalman Filter GPU Motivation

Potentially thousands of
tracks to reconstruct for every
event in the trigger.

Significant acceleration
possible by reconstructing
one track per GPU thread.

GPU benefits at other experiments

Kalman Filter port to CUDA (GSI
Scientific Report 2008,
FAIR-EXPERIMENTS-38)

ALICE TPC HLT code GPU
based / future PANDA TPC code

GPUs to be used for STS
(Silicon Tracking System) within
CBM (Compressed Baryonic
Matter) experiment at FAIR/GSI.
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Track Reconstruction in ATLAS

Tracks reconstructed
using the Kalman filter
method.

The trajectory of a track
is predicted using
detector hits as input.

Backward smoothing
filter applied after final
Kalman Filter estimation.

C++ Class Hierarchy of Track Objects
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Kalman Filter for CUDA

Initial Complications

Class inheritance structure captures filter
specialism for each sub-detector.

Dynamic creation of objects in the main routine.

Track state retention at each filtering step.

Break down main routine for a smaller kernel.

Feasibility Studies (Maria Rovatsou)

Standalone version successfully ported to C.

Pre-allocated memory needed for track objects.

Promising results ⇒ memory footprint per track
needs to be reduced.
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Kalman Filter for CUDA
D. Emeliyanov (first results)

Standalone version
successfully ported to C.

Structs of arrays used to
store track data.

Vector data types (e.g. float4)
for compact representation of
data.

One GPU thread per track.

Modification of smoothing
algorithm required for single
precision arithmetic.
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Muon tracks, pT =10GeV, full MC simulation

Over 5x speed-up seen at 3000 tracks.
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Kalman Filter for CUDA
D. Emeliyanov (latest results)
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Kalman Filter Optimisations
D. Emeliyanov (latest results)

A set of optimizations has been applied
Optimised code gives ∼20x speed-up w.r.t. the CPU
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Where is most HEP CPU consumed?

After triggering the LHC experiments still
produce vast amounts of data!

We developed worldwide LHC computing
grid infrastructure

Approximately 15 PB of data
recorded per annum

Currently >100,000 processors
across Grid

130 sites in 34 countries

Geant4 simulation of detector response
(∼ 1000 cpu seconds per event)

Up to ten million events simulated daily

G4 failure rate is less than 10−6
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Particle tracking in a magnetic field

Preliminary GPGPU test case study

Tracking charged particles in
the magnetic field

Lorentz force (perpendicular
to plane of magnetic field)

F =ma = q · (E + v× B)

dv
dt

= a =
q
m
· (E + v× B)

Solve the differential equation
with 4th order Runge Kutta
Integration (called “ Stepper”
algorithm)

23 / 29



GPU Computing
Z Finder

Kalman Filter
Summary

GPU Motivation
Track Reconstruction in ATLAS
Kalman Filter for CUDA

Particle tracking in a magnetic field

Preliminary GPGPU test case study

Tracking charged particles in
the magnetic field

Lorentz force (perpendicular
to plane of magnetic field)

F =ma = q · (E + v× B)

dv
dt

= a =
q
m
· (E + v× B)

Solve the differential equation
with 4th order Runge Kutta
Integration (called “ Stepper”
algorithm)

23 / 29



GPU Computing
Z Finder

Kalman Filter
Summary

GPU Motivation
Track Reconstruction in ATLAS
Kalman Filter for CUDA

Particle tracking in a magnetic field

Preliminary GPGPU test case study

Tracking charged particles in
the magnetic field

Lorentz force (perpendicular
to plane of magnetic field)

F =ma = q · (E + v× B)

dv
dt

= a =
q
m
· (E + v× B)

Solve the differential equation
with 4th order Runge Kutta
Integration (called “ Stepper”
algorithm)

23 / 29



GPU Computing
Z Finder

Kalman Filter
Summary

GPU Motivation
Track Reconstruction in ATLAS
Kalman Filter for CUDA

Particle tracking in a magnetic field

Preliminary GPGPU test case study

Tracking charged particles in
the magnetic field

Lorentz force (perpendicular
to plane of magnetic field)

F =ma = q · (E + v× B)

dv
dt

= a =
q
m
· (E + v× B)

Solve the differential equation
with 4th order Runge Kutta
Integration (called “ Stepper”
algorithm)

23 / 29



GPU Computing
Z Finder

Kalman Filter
Summary

GPU Motivation
Track Reconstruction in ATLAS
Kalman Filter for CUDA

Steppers
Steppers (EM field integration steps)
Various performance requirements:

Miss Distance (chord sagitta),
Boundary Intersection Error,
Tolerable Integration Error, . . .

Lots of simulation time was spent on
field calls...
Introduced adaptive stepper & caching
Different steppers:

G4ClassicalRK4
(EM field map: 10 calls per step)
AtlasRK4
(EM field map:2 calls per step
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Acceleration with GPGPUs

Studied GPU acceleration of the standard 4th order
Runge-Kutta (G4ClassicalRK4)

1 Using the GPGPU, pre-calculated a “look-up” table of
derivative calculations for a space point matrix

Calculation time not a limiting factor (abandoned this idea)
Also lost accuracy due to rounding to nearest look up point

2 Increased calculation complexity to use adaptive stepping
Adjusting step size to be within an error tolerance
Still slower than the CPU. . .

3 Treated x,y,z coordinates in parallel (3 threads in block)
Cross-product (v× B) calculation needs perp. coordinates
Set up the threads in the block to use shared memory
Speed was now closer to CPU

4 Next stage was to do many particle tracks in parallel. . .
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Magnetic Field Integration results

Rapidly achieved a factor 32 speedup (more in progress)
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Reconstruction: Tracking

Reconstruction time
depends on multiplicity in
the detector
Track finding has worst
combinatorial behaviour
(expected) and starts to
dominate already at
modest multiplicities.
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Reconstruction: Tracking
Christian Schmidt

Initial prototyping of tracking on GPUs being done
Single thread for each combination in every segment
combination
Assigns GPU-global hit data via thread index
Preliminary results are showing GPU is at least 10 times
faster than CPU
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The ATLAS trigger, particle tracking & simulation
algorithms are key areas where GPUs can be used to
improve performance.
Significant enhancements to the trigger and reconstruction
algorithms could prove invaluable for dealing with the rates
from the LHC upgrade.
Observed an initial 32x speed-up for parallel Runge Kutta
integration.
Best case optimisation of 35x speed-up for the Z Finder
routine.
Port of OO-based Kalman Filter algorithm showed GPU
acceleration is feasible and scales to thousands of tracks.
For much more information please see the talks at the
recent workshop Future computing for Particle Physics
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