
Efficient Pseudo-Random Number
Generation for Monte-Carlo

Simulations Using GPU

Siddhant Mohanty, Subho Shankar
Banerjee, Dushyant Goyal, Ajit

Mohanty and Federico Carminati

1

Device: NVIDIA GeForce GTX 480

• Compute Capability: 2.0(suitable for double
precision)

• Total Global Memory: 1609760768
• Total Constant Memory: 65536
• Multiprocessor count: 15
• Shared memory per mp: 49152
• Registers per mp: 32768
• Threads in warp: 32
• Maximum threads per block: 1024
• Maximum number of blocks: 65535

2

Two important aspects of this
presentation

• Fast and efficient random number generation

on GPU.

• Multivariate correlated sampling using both
CPU and GPU.

3

Random Number Generation

The class of devices that have been designed
having parallelism features in mind is the
Graphics Processing Unit (GPU) which are highly
parallel, multithreaded computing devices. One
application where the use of massive parallelism
comes instinctively is Monte-Carlo simulations
where a large number of independent events
have to be simulated. At the core of the Monte-
Carlo simulation lies the random number
generators.

4

For GPU Programming, the random
number generator should have:

• Good statistical properties.

• High computational speed.

• Low memory use.

• Large period.

5

Mersenne Twister

• It is one of the most respected methods(used
in ROOT as class TRandom3).

• Has a large period of .

• Very good statistical properties.

6

19,9372

However it is not suitable for implementation
in the GPU as it has a large state that must be
updated serially. Each GPU thread must have
an individual state in global RAM and requires
multiple access per generator. The relatively
large number of computation per generated
number makes the generator too slow for GPU
programming except in cases where the
ultimate in quality is needed.

7

Hybrid Approach: Tausworthe and LCG

LCG(Linear Congruential Algorithm)

where,
m =
a= 1664525
c=1013904223UL

Here the mod operation is not explicitly
required due to the unsigned overflow.

8

1 () modn nX aX C m+ = +

322

Tausworthe Generator

unsigned TausStep (unsigned &z)

{

unsigned b = (((z << s1) ^ z) >> s2);

return z=(((z & M) << s3) ^ b);

}

Where s1,s2,s3,M are all constants.

9

Combined Generator

float HybridTaus()
{
//combined period is LCM(p1,p2,p3,p4)
return 2.3283064364387e-10 * (//Periods
TausStep(seed1,13,19,12,4294967294UL) ̂ //p1=2^31-1
TausStep(seed2,2,25,4,4294967288UL) ̂ //p2=2^30-1
TausStep(seed3,3,11,17,4294967280UL) ̂ //p3=2^28-1
LCGStep(seed4,1664525,1013904223UL) //p4=2^32
);

}
Hence, combined period = 2^121.

10

Seed generation

• For the initial seed we use
unsigned seed(int idx)
{
return idx*1099087573UL;
}

Where idx is the thread index.
It is known as the quick and dirty LCG and the
sequence is random enough for the seed
generation.

11

Auto-Correlation

12

[] []()()m av avC x i x x i m x= − + −

Multivariate Alias Sampling

It is carried out :

• Using CPU

• Using GPU(both CUDA and OpenCL)

13

Example :

14

We Sample using walker’s alias techniques which requires 4
random numbers per sample. The detail of the alias

implementation is beyond the scope of this presentation.

Plots for original and generated
distribution

15

Left: Circles represent original points and squares are the generated points.
Right: Circles represent original points and continuous curve is for generated

points

16

17

Time comparison for events

18

610

Conclusions

• We have implemented a hybrid generator which
is quite fast and efficient for GPU programming.

• Using this hybrid generator we have carried out
multivariate correlated Monte-Carlo sampling.

• The kernel execution in GPU is about 1000 times
faster as compared to CPU.

• The overall execution is only 10 times faster as
the memory copy operation from device to host
or vice-versa is extremely slow.

19

	Efficient Pseudo-Random Number Generation for Monte-Carlo Simulations Using GPU
	Device: NVIDIA GeForce GTX 480
	Two important aspects of this presentation	
	Random Number Generation
	For GPU Programming, the random number generator should have:
	Mersenne Twister
	Slide Number 7
	Hybrid Approach: Tausworthe and LCG
	Tausworthe Generator
	Combined Generator
	Seed generation
	Auto-Correlation
	Multivariate Alias Sampling
	Example :
	Plots for original and generated distribution
	Slide Number 16
	Slide Number 17
	Time comparison for events
	Conclusions

