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Current servers architectures

 Enterprise servers divide in 3 categories:
 SMP (Symmetric Multi Processing)

• Common architecture multiple processors connected 
symmetrically on the memory system

 MPP (Massive Parallel Processing)
• Non sharing architecture dividing the system into several 

nodes that can access local resources often connected 
with proprietary interconnect

 NUMA (Non Uniform Memory Access)
• The full system divides into multiple nodes which can 

access both local and remote memory.
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NUMA architecture

NUMA architecture 
divides in multiple 
nodes with access to 
local and remote 
memory, at a cost for 
remote memory.

Node0 Node1

Node2 Node3
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Why NUMA now?

 Increasing performance now means more and 
more cores

 Both CPUs and memory don't see a boost in 
frequency anymore

 NUMA nicely solves these issues, offering a 
scalable design for future many-cores 
systems
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Nehalem microarchitecture

 Nehalem microarchitecture is 
equipped with an Integrated 
Memory Controller, and 
some QuickPath Interconnect 
links (1 for workstations, 2 for 
DS servers, 4 for MS 
servers)

 Microarchitecture allows 
scalable design for servers

QPI links

IMC

DDR3

IMC

Dual Socket capable
             NHM
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Nehalem microarchitecture
Single and Dual Sockets designs

   US
server

SB

network

SB

network   DS
server

local 1 hop
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Nehalem microarchitecture
Quad Sockets design

SB

network

   QS
server

From
CPUs

local 1 hop
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Magny-Cours
Quad Socket design 

 Each 12-core Magny-Cours is connected to 
its 3 other neighbors
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Magny-cours
Quad Socket design 

 But each Magny-Cours is composed of a pair 
of 6-core Istanbul CPUs
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NUMA considerations

 NUMA factor:
 (remote latency)/(local latency)
 for Westmere 140ns/90ns ~ 1.5

 Linux decomposes a Numa server into nodes:
 A node is a set of CPUs and its associated 

memory given by ACPI tables
 DP system             QP system

available: 2 nodes (0-1)
node 0 size: 12279 MB
node 1 size: 12288 MB
node distances:
node   0   1 
  0:  10  20 
  1:  20  10 

available: 4 nodes (0-3)
node 0 size: 32209 MB
node 1 size: 32320 MB
node 2 size: 32320 MB
node 3 size: 32320 MB
node distances:
node   0   1   2   3 
  0:    10  21  21  21 
  1:    21  10  21  21 
  2:    21  21  10  21 
  3:    21  21  21  10 
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NUMA considerations

 QP Magny-Cours
available: 8 nodes (0-7)
node 0 size: 16143 MB
node 0 free: 15261 MB
node 1 size: 8080 MB
node 1 free: 7854 MB
node 2 size: 16160 MB
node 2 free: 16124 MB
node 3 size: 8080 MB
node 3 free: 6463 MB
node 4 size: 16160 MB
node 4 free: 16111 MB
node 5 size: 8080 MB
node 5 free: 8045 MB
node 6 size: 16160 MB
node 6 free: 16092 MB
node 7 size: 7448 MB
node 7 free: 3833 MB
node distances:
node   0   1   2   3   4   5   6   7 
  0:  10  16  16  22  16  22  16  22 
  1:  16  10  22  16  22  16  22  16 
  2:  16  22  10  16  16  22  16  22 
  3:  22  16  16  10  22  16  22  16 
  4:  16  22  16  22  10  16  16  22 
  5:  22  16  22  16  16  10  22  16 
  6:  16  22  16  22  16  22  10  16 
  7:  22  16  22  16  22  16  16  10 
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Memory latency measurements
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Memory latency measurements
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Memory latency measurements
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Memory latency measurements
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Memory latency measurements
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Memory latency measurements
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Memory bandwidth measurements
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Memory bandwidth measurements
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Memory bandwidth measurements
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Memory bandwidth measurements
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Managing OpenMP on NUMA 
systems

 OpenMP eases parallel application 
development
 Perfect for SMP systems from previous 

generations
• Flat memory model

 What do NUMA systems change?
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stream

 Stream is a simple bandwidth benchmark, a 
lot of implementations are available

• Single threaded
• OpenMP
• MPI
• Customs

 3 large arrays of doubles defined (N=20000k)
• Using 20000000*8*3=457MB of data
• 4 operations performed and timed on those arrays:

– Copy: c[j] = a[j]
– Scale: b[j] = scalar * c[j]
– Add: c[j] = a[j] + b[j]
– Triad: a[j] = b[j] + scalar * c[j]
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OpenMP on NUMA systems

 First compile stream omp with GCC
 Using CPUSET, stream is constrained to run 

on cores of one numa node and use: 
 Local memory: allocating memory on the same 

numa node
 Remote memory: allocating memory on the other 

numa node

 How does stream behaves when running on 
the system without any constraint
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OpenMP on NUMA systems:
cpusets
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OpenMP on NUMA systems

 Using ICC, environment variable KMP_AFFINITY allows to 
control omp threads placement
 Verbose: allows to extract the scheduling information
 granularity=core: control placement at the core level
 Type:

• Compact: assigns the OpenMP thread <n>+1 to a free thread context as close 
as possible to the thread context where the <n> OpenMP thread was placed

• Scatter: distributes the threads as evenly as possible across the entire system 
(opposite of compact)

 Compare execution and scheduling using KMP_AFFINITY:
 Unset
 KMP_AFFINITY=verbose,granularity=core,compact
 KMP_AFFINITY=verbose,granularity=core,scatter
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OpenMP on NUMA systems: 
KMP_AFFINITY
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OpenMP on NUMA systems
X5670
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OpenMP on NUMA systems

 A hidden “detail”:
 During all the previous measurements, memory 

was initialized in parallel

 What happens if memory is initialized by the 
master thread?
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OpenMP on NUMA systems
serial initialization
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OpenMP on NUMA systems

 Parallel memory initialization is primordial 
because Linux and most operating systems use 
memory in place: where it was first touched
 Memory migration patches exist but are not in the 

kernel

 Affinity can be interesting:
 Using a numa DP system as 2 SMP systems in one 

server (compact, cpuset, numactl)
 Scatter, can help
 Explicit scheduling is possible

Need to extract the topology of the system
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Extracting system topology

 Hwloc
 Displays the topology (lstopo)
 Offers some bindings to cpusets
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Extracting system topology

 Westmere:
 6 cores, 2 QPI links per socket, Integrated 

Memory Controller, 32nm
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Extract the topology

 WSM-EX
 40 cores
 4 sockets
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Extract the topology

 Magny-Cours
 48 cores
 4 sockets
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Questions ?
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