Happy Retirement(?) Subir

Happy Retirement(?) Subir

Our work together:

Happy Retirement(?) Subir

Our work together:

Happy Retirement(?) Subir

Our work together:

Happy Retirement(?) Subir

LOW-MASS PHOTINOS AND SUPERNOVA 1987A

John ELLIS

CERN, CH-1211 Geneva 23, Switzerland

K.A. OLIVE

School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

S. SARKAR
Rutherford-Appleton Laboratory, Chilton, Didcot OX11 0QC, UK

and

D.W. SCIAMA

International School of Advanced Studies, Strada Costiera 11, I-34014 Trieste, Italy
and DAMTP and Institute of Astronomy, Cambridge CB3 9EW, UK

Received 16 September 1988

Photinos or higgsinos with mass $\mathrm{O}(100) \mathrm{eV}$ are not excluded by cosmological considerations, and their radiative decays could be responsible for the surprisingly large ultra-violet background recently detected at a red-shift $z \sim 4$. The agreement of the neutrino data from supernova 1987A with standard expectations severely restricts the energy which could have been emitted via such light photinos or higgsinos, and hence constrains the parameters of models in which they appear. In the low-mass photino case, we find that squark masses between $\sim 60 \mathrm{GeV}$ and $\sim 2.5 \mathrm{TeV}$ are excluded. This together with laboratory limits excludes the range of squark masses generally favoured by naturalness arguments. In the low-mass higgsino case, we exclude much of the range of ratios of Higgs VEVs favoured by many models.

Happy Retirement(?) Subir

LOW-MASS PHOTINOS AND SUPERNOVA 1987A

John ELLIS

CERN, CH-1211 Geneva 23, Switzerland

K.A. OLIVE
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

S. SARKAR
Rutherford-Appleton Laboratory, Chilton, Didcot OX11 0QC, UK

and

D.W. SCIAMA

International School of Advanced Studies, Strada Costiera 11, I-34014 Trieste, Italy and DAMTP and Institute of Astronomy, Cambridge CB3 9EW, UK

$m_{\tilde{q}}>2.5 \mathrm{TeV}$

Received 16 September 1988

Photinos or higgsinos with mass $\mathrm{O}(100) \mathrm{eV}$ are not excluded by cosmological considerations, and their radiative decays could be responsible for the surprisingly large ultra-violet backgroung recently detected at a red-shift $z \sim 4$. The agreement of the neutrino data from supernova 1987A with standard expectations severely restricts the energy which could have been emitted via such light photinos or higgsinos, and hence constrains the paraneters of models in which they appear. In the low-mass photino case, we find that squark masses between $\sim 60 \mathrm{GeV}$ and $\sim 2.5 \mathrm{TeV}$ are excluded. This together with laboratory limits excludes the range of squark masses generally favoured by naturalness arguments. In the low-mass higgsino case, we exclude much of the range of ratios of Higgs VEVs favoured by many models.

Recent updates to Big Bang Nucleosynthesis

- BBN and the WMAP/Planck determination of $\eta, \Omega_{B} \mathrm{~h}^{2}$
- Planck 2018
- Towards Precisions abundances for ${ }^{4} \mathrm{He}$
- New Cross section measurements
- Concordance
- Neutrinos and Constraints on BSM physics

Conditions in the Early Universe:

$$
\begin{gathered}
T \gtrsim 1 \mathrm{MeV} \\
\rho=\frac{\pi^{2}}{30}\left(2+\frac{7}{2}+\frac{7}{4} N_{\nu}\right) T^{4} \\
\eta=n_{B} / n_{\gamma} \sim 10^{-10}
\end{gathered}
$$

β-Equilibrium maintained by weak interactions

Freeze-out at $\sim 1 \mathrm{MeV}$ determined by the competition of expansion rate $H \sim T^{2} / M_{p}$ and the weak interaction rate $\Gamma \sim G_{F}^{2} T^{5}$

Nucleosynthesis Delayed

(Deuterium Bottleneck)

$$
\begin{array}{ll}
p+n \rightarrow \mathbf{D}+\gamma & \Gamma_{p} \sim n_{B} \sigma \\
p+n \leftarrow \mathbf{D}+\gamma & \Gamma_{d} \sim n_{\gamma} \sigma e^{-E_{B} / T}
\end{array}
$$

Nucleosynthesis begins when $\Gamma_{p} \sim \Gamma_{d}$

$$
Y_{p}=\frac{2(n / p)}{1+(n / p)} \simeq 25 \%
$$

Remainder:

$$
\frac{n_{1}}{n_{B}} e^{-E_{B} / T} \sim 1 \quad @ T \sim 0.1 \mathrm{MeV}
$$

All neutrons $\rightarrow{ }^{4} \mathrm{He}$

Table 1: Key Nuclear Reactions for BBN

baryon density $\Omega_{b} h^{2}$

baryon density $\Omega_{b} h^{2}$

Fields, Olive, Yeh, Young

Uncertainties

Uncertainties

D/H

- All Observed D is Primordial!
- Observed in the ISM and inferred from meteoritic samples (also HD in Jupiter)
- D/H observed in Quasar Absorption systems

Table 3. PRECISION D/H MEASURES CONSIDERED IN THIS PAPER

QSO	z_{em}	z_{abs}	$\log _{10} N(\mathrm{HI}) / \mathrm{cm}^{-2}$	$[\mathrm{O} / \mathrm{H}]^{\mathrm{a}}$	$\log _{10} N\left(\mathrm{D}_{\mathrm{I}}\right) / N\left(\mathrm{H}_{\mathrm{I}}\right)$
HS 0105+1619	2.652	2.53651	19.426 ± 0.006	-1.771 ± 0.021	-4.589 ± 0.026
Q0913 +072	2.785	2.61829	20.312 ± 0.008	-2.416 ± 0.011	-4.597 ± 0.018
Q1243+307	2.558	2.52564	19.761 ± 0.026	-2.769 ± 0.028	-4.622 ± 0.015
SDSS J1358+0349	2.894	2.85305	20.524 ± 0.006	-2.804 ± 0.015	-4.582 ± 0.012
SDSS J1358+6522	3.173	3.06726	20.495 ± 0.008	-2.335 ± 0.022	-4.588 ± 0.012
SDSS J1419+0829	3.030	3.04973	20.392 ± 0.003	-1.922 ± 0.010	-4.601 ± 0.009
SDSS J1558-0031	2.823	2.70242	20.75 ± 0.03	-1.650 ± 0.040	-4.619 ± 0.026
We adopt the solar value $\log _{10}(\mathrm{O} / \mathrm{H})+12=8.69$ (Asplund et al. 2009).					

Cooke et al.

Updated

D/H abundances in Quasar absorption systems

BBN Prediction: $10^{5} \mathrm{D} / \mathrm{H}=2.51 \pm 0.08$

Obs Average: $10^{5} \mathrm{D} / \mathrm{H}=2.55 \pm 0.03$

Updated

D/H abundances in Quasar absorption systems

BBN Prediction: $10^{5} \mathrm{D} / \mathrm{H}=2.51 \pm 0.08$

Obs Average: $10^{5} \mathrm{D} / \mathrm{H}=2.55 \pm 0.03$
baryon density $\Omega_{b} h^{2}$

baryon density $\Omega_{b} h^{2}$

Fields, Olive, Yeh, Young

${ }^{4} \mathrm{He}$

Measured in low metallicity extragalactic HII regions (~100) together with O / H and N / H

$$
\mathrm{Y}_{\mathrm{P}}=\mathrm{Y}(\mathrm{O} / \mathrm{H} \rightarrow 0)
$$

Results for He dominated by systematic effects

- Interstellar Redding (scattered by dust)
-Underlying Stellar Absorption
- Radiative Transfer
-Collisional Corrections
MCMC statistical techniques have proven effective in parameter estimation

$$
\frac{F(\lambda)}{F(H \beta)}=y^{+} \frac{E(\lambda)}{E(H \beta)} \frac{\frac{W(H \beta)+a_{H}(H \beta)}{W}}{\frac{\left.W(\lambda)+a_{H}\right)}{W(\lambda)}} f_{\tau}(\lambda) \frac{1+\frac{C}{R}(\lambda)}{1+\frac{C}{R}(H \beta)} 10^{-f(\lambda) C(H \beta)}
$$

$$
\chi^{2}=\sum_{\lambda} \frac{\left(\frac{F(\lambda)}{F(H \beta)}-\frac{F(\lambda)}{F(H \beta)}{ }_{\mathrm{meas}}\right)^{2}}{\sigma(\lambda)^{2}}
$$

$$
\left(\mathrm{y}^{+}, \mathrm{n}_{e}, \mathrm{a}_{H e}, \tau, \mathrm{~T}, \mathrm{C}(\mathrm{H} \beta), \mathrm{a}_{H}, \xi\right)
$$

Aver, Olive, Skillman

Improvements

New emissivities
Aver, Olive, Porter, Skillman 2013
Adding new He line
$7 \mathrm{He}, 3 \mathrm{H}$ lines to fit 8 parameters
Izotov, Thuan, GusevaAver, Olive, Skillman2015
Aver, Berg, Olive, Pogge,
Adding new H and He lines
Add 2 He , and 9 H lines (H9-12, and P8-12)Salzer, Skillman2021For a total of 21 observables to fit 9 parameters (ap added).

Applied to Leo P

Aver, Berg, Olive, Pogge, Salzer, Skillman

	Skillman et al. [66]	This Work
Emission lines	9	21
Free Parameters	8	9
d.o.f.	1	12
$95 \% \mathrm{CL} \chi^{2}$	3.84	21.03
$\mathrm{He}^{+} / \mathrm{H}^{+}$	$0.0837_{-0.0062}^{+0.0084}$	$0.0823_{-0.0018}^{+0.0025}$
$\mathrm{n}_{e}\left[\mathrm{~cm}^{-3}\right]$	1_{-1}^{+206}	39_{-12}^{+12}
$\mathrm{a}_{\mathrm{He}}[\AA]$	$0.500_{-0.42}^{+0.42}$	$0.42_{-0.15}^{+0.11}$
τ	$0.00_{-0.00}^{+0.66}$	$0.00_{-0.00}^{+0.13}$
$\mathrm{T}_{e}[\mathrm{~K}]$	17,060 ${ }_{-2900}^{+1900}$	17,400 ${ }_{-1400}^{+1200}$
$\mathrm{C}(\mathrm{H} \beta$)	$0.100_{-0.07}^{+0.03}$	$0.10_{-0.02}^{+0.02}$
$\mathrm{a}_{H}[\AA]$	$0.94_{-0.94}^{+1.44}$	$0.51_{-0.18}^{+0.17}$
$\mathrm{a}_{P}[\AA]$	-	$0.00_{-0.00}^{+0.52}$
$\xi \times 10^{4}$	0_{-0}^{+156}	0_{-0}^{+7}
χ^{2}	3.3	15.3
p-value	7\%	23\%
$\mathrm{O} / \mathrm{H} \times 10^{5}$	1.5 ± 0.1	1.5 ± 0.1
Y	0.2509 ± 0.0184	0.2475 ± 0.0057

Most recent addition: AGC 198691 (2021)

Aver, Berg, Hirschauer, Olive,
Pogge, Rogers,
Salzer, Skillman
${ }^{4}$ He Prediction: 0.2469 ± 0.0002

Data: Regression: 0.2448 ± 0.0033

Li / H

Measured in low metallicity dwarf halo stars (over 100 observed)

Possible sources for the discrepancy

- Nuclear Rates
- Resonant reactions
- Stellar Depletion
- Stellar parameters
- Decaying Particles
- Axion Cooling
- Variable Constants

Arguments against stellar depletion

- Lack of dispersion in the plateau
- Observation of ${ }^{6} \mathrm{Li}$

${ }^{6} \mathrm{Li}$

In the happy but distant past:

$$
\begin{aligned}
& { }^{6} \mathrm{Li}(@[\mathrm{Fe} / \mathrm{H}] \sim-2.3): \\
& \mathrm{HD} 84937:{ }^{6} \mathrm{Li} / \mathrm{Li}=0.054 \pm 0.011 \\
& \text { BD } 26^{\circ} 3578:{ }^{6} \mathrm{Li} / \mathrm{Li}=0.05 \pm 0.03
\end{aligned}
$$

Hobbs \& Thorburn

Cayrel etal
cf. BBN abundance of about ${ }^{6} \mathrm{Li} / \mathrm{H}=10^{-14}$

$$
\text { or }{ }^{6} \mathrm{Li} / \mathrm{Li}<10^{-4}
$$

GCRN production of Be and B including primary and secondary sources

These data nicely accounted for by Galactic

 Cosmic Ray Nucleosynthesis

Both ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ appear to be destroyed

Both ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ appear to be destroyed

Implied Depletion

Fields \& Olive

Broken Spite plateau

Sbordone et al. (2010)

Broken Spite plateau

Note significant dispersion

Bonifacio et al. (2018)

Broken Spite plateau

Aguado et al. (2019)

Broken Spite plateau

Aguado et al. (2020)

Broken Spite plateau

Broken Spite plateau

Note significant dispersion

BBN and the CMB

From Planck (2015):
Convolved Likelihoods

$$
\begin{gathered}
\mathcal{L}_{\mathrm{CMB}}\left(\eta, Y_{p}\right) \\
\omega_{b}=0.022305 \pm 0.000225 \\
Y_{p}=0.25003 \pm 0.01367
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{NCMB}}\left(\eta, Y_{p}, N_{\nu}\right) \\
\omega_{b}= & 0.022212 \pm 0.000242 \\
N_{\mathrm{eff}}= & 2.7542 \pm 0.3064 \\
Y_{p}= & 0.26116 \pm 0.01812
\end{aligned}
$$

Cyburt, Fields, Olive, Yeh
From Planck 2018:

$$
\begin{aligned}
\omega_{\mathrm{b}}^{\mathrm{CMB}} & =0.022298 \pm 0.000200 \\
Y_{p} & =0.239 \pm 0.013
\end{aligned}
$$

$$
\begin{gathered}
\omega_{\mathrm{b}}^{\mathrm{CMB}}=0.022242 \pm 0.000221 \\
Y_{p, \mathrm{CMB}}=0.247 \pm 0.018 \\
N_{\mathrm{eff}}=2.841 \pm 0.298
\end{gathered}
$$

Fields, Olive, Yeh, Young

BBN and the CMB

$$
\mathrm{N}_{v}=3
$$

CMB only determination of η and Y_{P}

3σ BBN Prediction

Fields, Olive, Yeh, Young

BBN and the CMB

Monte-Carlo approach combining BBN rates, observations and CMB

Planck ($\mathrm{N}_{\nu}=3$) + BBN + PDG22 average

$\mathcal{L}_{\text {OBS }}(X) \quad$ Yellow

$$
\mathcal{L}_{\mathrm{CMB}}\left(Y_{p}\right) \propto \int \mathcal{L}_{\mathrm{CMB}}\left(\eta, Y_{p}\right) d \eta .
$$

Cyan
$\mathcal{L}_{\mathrm{CMB}-\mathrm{BBN}}\left(X_{i}\right) \propto$
$\int \mathcal{L}_{\mathrm{CMB}}\left(\eta, Y_{p}\right) \mathcal{L}_{\mathrm{BBN}}\left(\eta ; X_{i}\right) d \eta$
Purple

Yeh, Olive, Fields

BBN and the CMB

Monte-Carlo approach combining BBN rates, observations and CMB

BBN and the CMB

$\mathcal{L}_{\mathrm{CMB}}(\eta) \propto \int \mathcal{L}_{\mathrm{CMB}}\left(\eta, Y_{p}\right) d Y_{p}$.
Convolved Likelihoods
$\mathcal{L}_{\mathrm{CMB}-\mathrm{BBN}}(\eta) \propto \int \mathcal{L}_{\mathrm{CMB}}\left(\eta, Y_{p}\right) \mathcal{L}_{\mathrm{BBN}}\left(\eta ; Y_{p}\right) d Y_{p}$

Determination of η

$$
\begin{gathered}
\mathcal{L}_{\mathrm{BBN}-\mathrm{OBS}}(\eta) \propto \int \begin{array}{c}
\mathcal{L}_{\mathrm{BBN}}\left(\eta ; X_{i}\right) \mathcal{L}_{\mathrm{OBS}}\left(X_{i}\right) d X_{i} \\
\mathcal{L}_{\mathrm{CMB}-\mathrm{BBN}-\mathrm{OBS}}(\eta) \propto
\end{array} \int \mathcal{L}_{\mathrm{CMB}}\left(\eta, Y_{p}\right) \mathcal{L}_{\mathrm{BBN}}\left(\eta ; X_{i}\right) \mathcal{L}_{\mathrm{OBS}}\left(X_{i}\right) \prod_{i} d X_{i}
\end{gathered}
$$

Fields, Olive, Yeh, Young

BBN and the CMB

Convolved Likelihoods
Results for η

Constraints Used	mean $10^{10} \eta$	peak $10^{10} \eta$
CMB-only	6.104 ± 0.055	6.104
BBN $+Y_{p}$	$6.239_{-2.741}^{+1.202}$	5.031
BBN + D	6.042 ± 0.118	6.041
BBN $+Y_{p}+\mathrm{D}$	6.040 ± 0.118	6.039
CMB + BBN	6.124 ± 0.040	6.124
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}$	6.124 ± 0.040	6.124
$\mathrm{CMB}+\mathrm{BBN}+\mathrm{D}$	6.115 ± 0.038	6.115
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}+\mathrm{D}$	6.115 ± 0.038	6.115

Yeh, Shelton, Olive, Fields

BBN and the CMB

Monte-Carlo approach combining BBN rates, observations and CMB

Fields, Olive, Yeh, Young

BBN and the CMB

CMB and BBN determination of η and N_{v}

Yeh, Shelton, Olive, Fields

BBN and the CMB

Convolved Likelihoods

Results for $\eta\left(\mathrm{N}_{v}\right)$

Constraints Used	mean η_{10}	peak η_{10}	mean N_{ν}	peak N_{ν}	δN_{ν}
CMB-only	6.090 ± 0.061	$6.090_{-0.062}^{+0.061}$	2.800 ± 0.294	$2.764_{-0.282}^{+0.308}$	0.513
BBN $+Y_{p}+\mathrm{D}$	5.986 ± 0.161	$5.980_{-0.159}^{+0.163}$	2.889 ± 0.229	$2.878_{-0.226}^{+0.232}$	0.407
$\mathrm{CMB}+\mathrm{BBN}$	6.087 ± 0.061	$6.088_{-0.062}^{+0.061}$	2.848 ± 0.190	$2.843_{-0.189}^{+0.192}$	0.296
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}$	6.089 ± 0.053	$6.089_{-0.054}^{+0.054}$	2.853 ± 0.148	$2.850_{-0.148}^{+0.149}$	0.221
$\mathrm{CMB}+\mathrm{BBN}+\mathrm{D}$	6.092 ± 0.060	$6.093_{-0.060}^{+0.061}$	2.916 ± 0.176	$2.912_{-0.175}^{+0.178}$	0.303
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}+\mathrm{D}$	6.088 ± 0.054	$6.088_{-0.054}^{+0.054}$	2.898 ± 0.141	$2.895_{-0.141}^{+0.142}$	0.226

BBN and the CMB

Convolved Likelihoods

Results for $\eta\left(N_{v}\right)$

Constraints Used	mean η_{10}	peak η_{10}	mean N_{ν}	peak N_{ν}	δN_{ν}
CMB-only	6.090 ± 0.061	$6.090_{-0.062}^{+0.061}$	2.800 ± 0.294	$2.764_{-0.282}^{+0.308}$	0.513
$\mathrm{BBN}+Y_{p}+\mathrm{D}$	5.986 ± 0.161	$5.980_{-0.159}^{+0.163}$	2.889 ± 0.229	$2.878_{-0.226}^{+0.232}$	0.407
$\mathrm{CMB}+\mathrm{BBN}$	6.087 ± 0.061	$6.088_{-0.062}^{+0.061}$	2.848 ± 0.190	$2.843_{-0.189}^{+0.192}$	0.296
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}$	6.089 ± 0.053	$6.089_{-0.054}^{+0.054}$	2.853 ± 0.148	$2.850_{-0.148}^{+0.149}$	0.221
$\mathrm{CMB}+\mathrm{BBN}+\mathrm{D}$	6.092 ± 0.060	$6.093_{-0.060}^{+0.061}$	2.916 ± 0.176	$2.912_{-0.175}^{+0.178}$	0.303
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}+\mathrm{D}$	6.088 ± 0.054	$6.088_{-0.054}^{+0.054}$	2.898 ± 0.141	$2.895_{-0.141}^{+0.142}$	0.226

$\mathrm{N}_{\mathrm{v}}<3.18$ (95\% CL)

Yeh, Shelton, Olive, Fields

Summary

- BBN and CMB are in excellent agreement wrt D and He
- Li: Problematic
- most likely due to stellar depletion
- Wish list:
- New cross sections measurements for $\mathrm{D}(\mathrm{D}, \mathrm{p})$ and $\mathrm{D}(\mathrm{D}, \mathrm{n})$
- New high precision measurements of He
- Standard Model $\left(\mathrm{N}_{v}=3\right)$ is looking good!

BBN and the CMB

Forecast of $\sigma\left(N_{\nu}\right)$ Precision with Future Precision Observations

