Subir, I have a question for you Elisa Resconi Technical University of Munich 11.09.2023

IceCube's First Decade: Revealing Neutrino Sources

Elisa Resconi | 11.09.23

The IceCube Coll., Science 378 (2022)

 $P(\hat{E}_{\mu}|E_{\mu})$

2

Evidence of Neutrino Emission from NGC 1068

Indication of Neutrino Emission other Seyfert Galaxies

The IceCube Coll. (T. Glauch et al.), ICRC'23, https://pos.sissa.it/444/1052/pdf

Global significance

New Test Planed on Four Years of Additional Statistics

4

The Multiwavelength Picture of NGC 1068

Gamma Ray Flux << Neutrino Flux: How?

NGC 1068: An Archetype of Obscured AGN

One of the nearest and most studied Seyfert 2

Circumnuclear disk (CND) ~200 pc in radius

AGN

Bar connecting CND and starburst ring

IceCube can't resolve different emission components

Elisa Resconi | 11.09.23

Halo

Starburst activity:
~2 kpc starburst ring

NASA/JPL-Caltech/Roma Tre Univ.

NGC 1068: An Archetype of Obscured AGN

• Usual Question: Origins of Neutrinos? Specific Query: Locations and Mechanisms of Gamma-ray Absorption?

Emission powers different components

	Scale	Power (erg/s)	L_{γ} (erg/s)	L_{ν} (erg/s)
Star formation	> Kpc	1044.5	~ 10 ^{40.9}	~ 1040.6
Jet	~ Крс	10 ^{42.9±1}	~ 10 ^{41.7} (M87-like) [absorbed]	~ 1041.4
Outflow	~ 100 pc	10 ^{41.4±1.0}	< 10 ^{39.5}	< 10 ^{39.2}
BH vicinity	~ 0.03 millipc (~ 50 R _{s)}	1044.7±0.5	?	?

P. Padovani et al., in preparation

Total: ~ 10^{41.5}

Observed: $10^{40.92 \pm 0.03}$

 $10^{42.1\pm0.2}$

$L_{\nu} = 1.4 \cdot 10^{42} \text{ erg/s}$

Black Hole vicinity Seyferts: radio quiet AGN

Narrow line radio galaxy

Elisa Resconi | 11.09.23

image from L. Baronchelli

10

Seyferts = radio quiet Active Galactic Nuclei

jet not dominant

Radio active

QSO

11

Elisa Resconi | 11.09.23

image from L. Baronchelli

The Corona of hot electrons (and protons?)

Compton thick $(N_H > 10^{24} \text{ atoms cm}^{-2})$

Disk: photons at optical and UV wavelengths

Inverse Compton Scattering

The 'naive' scenario

see also Y. Inoue et al., ApJL'20, K. Murase et al., PRL'20, B. OSO

<u>Step 1</u>: acceleration of protons (and electrons) <u>Step 2</u>: $p-\gamma$ (also p-p) interaction *e.g.*, *E*_p ~ 100 *TeV* target $\gamma \sim X$ -ray domain (Corona component)

<u>Step 3</u>: mesons production <u>Step 4</u>: γ -ray \rightarrow degraded into MeV region neutrinos stream through <u>Note:</u> the Fermi-LAT component most probably associated to the starburst component

see Eichmann et al., Astrophys. J. 939 (2022)

The 'naive' scenario

see also Y. Inoue et al., ApJL'20, K. Murase et al., PRL'20, B. OSO

Step 1: acceleration of protons (and electrons) Step 2: $p-\gamma$ (also p-p) interaction e.g., $E_p \sim 100$ TeV target $\gamma \sim X$ -ray domain (Corona component)

Step 3: mesons productionCorona of hot electrons (X-ray)Step 4: γ -ray \rightarrow degraded into MeV regionCorona of hot electrons (X-ray)neutrinos stream throughCrucial Signature for Neutrino Validation & SearchNote: the Fermi-LAT component most probably associated to the starburst component

see Eichmann et al., Astrophys. J. 939 (2022)

The Corona

see e.g., A.C. Fabian et al., MNRAS '15

- <u>NGC1068 X-ray Emission</u>: Arises from scattered emission along our line of sight.
- Rapid X-ray Variability (2–10 keV): Implies a compact corona near the SMBH.
- Anisotropic Coronae: Influenced by corona position, black hole spin, and disc inclination.

3) Toroidal corona

4) Spherical corona

image from L. Baronchelli

The Corona

see e.g., A.C. Fabian et al., MNRAS '15

- NGC1068 X-ray Emission: Arises from scattered emission along our line of sight.
- Rapid X-ray Variability (2–10 keV): Implies a compact corona near the SMBH.
- Anisotropic Coronae: Influenced by corona position, black hole spin, and disc inclination.
- <u>Coronae Placement</u>: Many of the coronae are positioned within regions where

General Relativistic Effects might play Crucial Roles. Strong gravity regime.

image from L. Baronchelli

The 'naive' scenario

see also Y. Inoue et al., ApJL'20, K. Murase et al., PRL'20, B. OSO

Step 1: acceleration of protons (and electrons) Step 2: $p-\gamma$ (also p-p) interaction e.g., $E_p \sim 100$ TeV target $\gamma \sim X$ -ray domain (Corona component)

What happens to the strong interactions in the realm of strong gravity?

I have asked several theorists: What happens to the strong interactions in the realm of strong gravity?

<u>Group 1:</u>

"Possibly nothing, but I'm not an expert. This question seems quite exotic and not particularly well-defined. There are for sure papers you can consult."

<u>Group 2:</u> "Nothing significant, as a

approximated as flat."

"Nothing significant, as at the scale of strong interactions, spacetime can be

19

I have asked several theorists: What happens to the strong interactions in the realm of strong gravity?

<u>Group 1:</u>

"Possibly nothing, but I'm not an expert. This question seems quite exotic and not particularly well-defined. There are for sure papers you can consult."

<u>Group 2:</u> "Nothing significant, as at the scale of strong interactions, spacetime can be approximated as flat."

<u>Group 3:</u> "Ask Subir!"

Elisa Resconi | 11.09.23

20

Conclusions, questions and a proposal

IceCube Connection to NGC1068 & Other Seyfert Galaxies Point to:

- Proton Acceleration near SMBH: Mechanisms?
- Hot Corona's Photon Field: Origin, Composition, & Morphology?
- Gamma-Ray Showering & Implications: Cascade to MeV Range?
- MeV Telescope Gap: How to Overcome Confirmation Challenges?
- Compact, Obscured Region Interactions: General Relativity Corrections?

Ask Subir!

Conclusions, questions and a proposal

IceCube Connection to NGC1068 & Other Seyfert Galaxies Point to:

- Proton Acceleration near SMBH: Mechanisms?
- Hot Corona's Photon Field: Origin, Composition, & Morphology?
- Gamma-Ray Showering & Implications: Cascade to MeV Range?
- MeV Telescope Gap: How to Overcome Confirmation Challenges?
- Compact, Obscured Region Interactions: General Relativity Corrections?

Berezinsky's 1981 Groundwork: Proposal to Label Seyfert Galaxies with Neutrino Component as 'Berezinsky Galaxies'

Ask Subir!

In the example of a massive black hole in a cocoon we encountered a model of a hidden source: an object which contains particles accelerated to high energies, but is not seen in high-energy electromagnetic radiation (X-ray and (or) gamma-ray radiation).

Black hole Accretion disc Gaseous anvelopa

Berezinsky, Ginzburg, MNRAS 1981 Silberberg, Shapiro 1982

Elisa Resconi | 11.09.23

The 'Hidden' source idea

