



# Interactions about self-interacting dark matter

**Felix Kahlhoefer** SubirFest Oxford, 11 September 2023











# Light/mass offsets in the lensing cluster Abell 3827: evidence for collisional dark matter?

### Liliya L. R. Williams<sup>1\*</sup> and Prasenjit Saha<sup>2\*</sup>

<sup>1</sup>Department of Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA <sup>2</sup>Institute for Theoretical Physics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Self-interacting dark matter, July 31, 2017 to August 4, 2017 Niels Bohr Institute

0.0.

### Abell 3827









Key observation: Four central galaxies that appear to be separated from the peaks of the dark matter distribution

Possible interpretation: Effective drag force on dark matter haloes, arising from the self-interaction of dark matter particles

A promising opportunity to prove ACDM wrong!

### Self-interacting dark matter



WIMPs are generally not expected to have large self-interactions

Papers on dark matter particles with new strong interactions (e.g. technibaryons) go back to the 1980s

#### SELF-INTERACTING DARK MATTER

ERIC D. CARLSON

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138

MARIE E. MACHACEK Department of Physics, Northeastern University, Boston, MA 02115

AND

LAWRENCE J. HALL

Department of Physics, University of California; and Theoretical Physics Group, Physics Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 Received 1992 March 17; accepted 1992 April 20

## Self-interacting dark matter



WIMPs are generally not expected to have large self-interactions

- Papers on dark matter particles with new strong interactions (e.g. technibaryons) go back to the 1980s
- Idea gained traction in early 2000s when it was proposed as a solution for various discrepancies between N-body simulations and observations

### **Observational Evidence for Self-Interacting Cold Dark Matter**

David N. Spergel and Paul J. Steinhardt Princeton University, Princeton, New Jersey 08544 (Received 20 September 1999)



### The cusp-core problem

Discrepancy between predicted and observed circular velocities in the central region of DM haloes

Deficit in mass points to constant-density cores rather than cuspy density profiles

Tulin & Yu, arXiv:1705.02358 60 DDO 154 Cusp Dark Matter Density (M<sub>©</sub>/kpc<sup>3</sup>) 50  $10^{8}$ 07 V<sub>cir</sub> (km/s) 00 00 Core 107 Gas 20  $10^{6}$ 10 Stars 0.5 0.1 5 10 2 Radius (kpc) Radius (kpc)

Problem: Reliable observations

 $\rightarrow$  many stars  $\rightarrow$  large baryonic effects

Small baryonic effects

 $\rightarrow$  few stars  $\rightarrow$  unreliable observations

## **Resolving the small-scale tensions**



Dark matter (DM) self-interactions can transfer energy from hot regions of a DM halo (shallow gravitational potential) to cold regions (deep gravitational potential)

As a result, they transform halos with cuspy profile into halos with central cores



## But isn't dark matter collisionless?





Most DM particles travel through the Bullet Cluster without scattering

The Bullet Cluster has a surface DM density of Σ ~ 0.3 g/cm<sup>2</sup>

- This implies  $\Sigma \sigma / m\chi \leq 0.5$ , and thus  $\sigma / m\chi \leq 1.5 \text{ cm}^2/\text{g} = 3 \text{ barn/GeV}$
- Not at all a small cross section comparable to neutron scattering!



### **Subhaloes in Self-Interacting Galactic Dark Matter Haloes**

### Mark Vogelsberger<sup>1\*</sup>, Jesus Zavala<sup>2,3</sup><sup>†</sup>, Abraham Loeb<sup>1</sup>

<sup>1</sup>Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
<sup>2</sup>Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
<sup>3</sup>Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5, Canada

# **Constraining Self-Interacting Dark Matter with the Milky Way's dwarf spheroidals**

Jesús Zavala<sup>1,2\*</sup>, Mark Vogelsberger<sup>3</sup><sup>†</sup> and Matthew G. Walker<sup>3</sup><sup>‡</sup>,

<sup>1</sup>Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5, Canada <sup>2</sup>Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada <sup>3</sup>Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA



0.0



### Subhaloes in Self-Interacting Galactic Dark Matter Haloes

Mark Vogelsberger<sup>1\*</sup>, Jesus Zavala<sup>2,3</sup><sup>†</sup>, Abraham Loeb<sup>1</sup>

<sup>1</sup>Harvard-Smithson <sup>2</sup>Department of Phy <sup>3</sup>Perimeter Institute

--

### Constrain dwarf sph

Self-interaction cross sections smaller than 1 cm<sup>2</sup>/g have no observable effect on small scales





Ailky Way's

Jesús Zavala<sup>1,2\*</sup>, Mark Vogelsberger<sup>3</sup><sup>†</sup> and Matthew G. Walker<sup>3</sup><sup>‡</sup>,

<sup>1</sup>Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5, Canada <sup>2</sup>Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada <sup>3</sup>Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

## **Rare and frequent self-interactions**

- Early studies assumed that collisions between dark matter particles are rare and lead to large momentum transfer
- Dark matter particles ejected through individual collisions
  - $\rightarrow$  Mass loss and deformation of dark matter halos

How does this relate to the effective drag force assumed by Williams & Saha?







### A summer under the roof



### Colliding clusters and dark matter self-interactions



Felix Kahlhoefer,<sup>1\*</sup> Kai Schmidt-Hoberg,<sup>2</sup> Mads T. Frandsen<sup>3</sup> and Subir Sarkar<sup>1,4</sup>

- <sup>1</sup> Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
- <sup>2</sup> Theory Division, CERN, 1211 Geneva 23, Switzerland
- <sup>3</sup> CP<sup>3</sup>-Origins and the Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- <sup>4</sup> Niels Bohr Institute, Blegdamsvej 17, 2100 København Ø, Denmark
- An effective drag force arises from averaging over a large number of scattering processes with small scattering angle
- Frequent self-interactions give qualitatively different behaviour compared to rare selfinteractions
- Key result: drag force compensated by gravitational forces → remaining effect is small





# On the cross-section of Dark Matter using substructure infall into galaxy clusters

David Harvey<sup>1\*</sup>, Eric Tittley<sup>1</sup>, Richard Massey<sup>2</sup>, Thomas D. Kitching<sup>3</sup>, Andy Taylor<sup>1</sup>, Simon R. Pike<sup>4</sup>, Scott T. Kay<sup>4</sup>, Erwin T. Lau<sup>5,6</sup> and Daisuke Nagai<sup>5,6</sup> <sup>1</sup>SUPA, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK <sup>2</sup>Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, UK <sup>3</sup>Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK <sup>4</sup>Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK <sup>5</sup>Department of Physics, Yale University, New Haven, CT 06520, USA



#### The Mismeasure of Mergers: Revised Limits on Self-interacting Dark Matter in Merging Galaxy Clusters

David Wittman<sup>1,2</sup>, Nathan Golovich<sup>1,3</sup>, and William A. Dawson<sup>3</sup> <sup>1</sup>Physics Department, University of California, Davis, CA 95616, USA; dwittman@physics.ucdavis.edu <sup>2</sup>Institito de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Lisbon, Portugal <sup>3</sup>Lawrence Livermore National Laboratory, P.O. Box 808 L-210, Livermore, CA 94551, USA *Received 2017 January 17; revised 2018 August 21; accepted 2018 September 12; published 2018 December 17* 





### What about Abell 3827?

**21** 11/09/2023 Interactions about self-interacting dark matter





The behaviour of dark matter associated with 4 bright cluster galaxies in the 10 kpc core of Abell 3827

Richard Massey<sup>1,2\*</sup>, Liliya Williams<sup>3</sup>, Renske Smit<sup>2</sup>, Mark Swinbank<sup>2</sup>, Thomas D. Kitching<sup>4</sup>, David Harvey<sup>5</sup>, Mathilde Jauzac<sup>1,6</sup>, Holger Israel<sup>1</sup>, Douglas Clowe<sup>7</sup>, Alastair Edge<sup>2</sup>, Matt Hilton<sup>6</sup>, Eric Jullo<sup>8</sup>, Adrienne Leonard<sup>9</sup>, Jori Liesenborgs<sup>10</sup>, Julian Merten<sup>11,12</sup>, Irshad Mohammed<sup>13</sup>, Daisuke Nagai<sup>14</sup>, Johan Richard<sup>15</sup>, Andrew Robertson<sup>2</sup>, Prasenjit Saha<sup>13</sup>, Rebecca Santana<sup>7</sup>, John Stott<sup>2</sup> & Eric Tittley<sup>16</sup>



The beha cluster ga

10 N1)

relative

ADec (arcsec,

.....

-10

60

 $-\Delta R$ 

Statistically significant offset remains! Best-fit self-interaction cross section:  $\sigma / m_{\chi} < (1.7 \pm 0.7) \text{ cm}^2/\text{g}$ 

Richard Massey<sup>1,2\*</sup>, Liliya Williams<sup>9</sup>, Renske Smit<sup>2</sup>, Mark Swinbank<sup>2</sup>, Thomas D. Kitching<sup>4</sup>, David Harvey<sup>5</sup>, Mathilde Jauzac<sup>1,6</sup>, Holger Israel<sup>1</sup>, Douglas Clowe<sup>7</sup>, Alastair Edge<sup>2</sup>, Matt Hilton<sup>6</sup>, Eric Jullo<sup>8</sup>, Adrienne Leonard<sup>9</sup>, Jori Liesenborgs<sup>10</sup>, Julian Merten<sup>11,12</sup>, Irshad Mohammed<sup>13</sup>, Daisuke Nagai<sup>14</sup>, Johan Richard<sup>15</sup>, Andrew Robertson<sup>2</sup>, Prasenjit Saha<sup>13</sup>, Rebecca Santana<sup>7</sup>, John Stott<sup>2</sup> & Eric Tittley<sup>16</sup>

### On the interpretation of dark matter self-interactions in Abell 3827



Felix Kahlhoefer,<sup>1\*</sup> Kai Schmidt-Hoberg,<sup>1</sup> Janis Kummer<sup>1</sup> and Subir Sarkar<sup>2,3</sup>

<sup>1</sup> DESY, Notkestrasse 85, D-22607 Hamburg, Germany

<sup>2</sup> Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

 $^3$  Niels Bohr Institute, Blegdamsvej 17, 2100 København $\varnothing,$  Denmark

- Improved modeling implies larger self-interaction cross section ( $\sigma$  /  $m_{\chi} \sim 3$  cm<sup>2</sup>/g)
- Possible tension with upper bounds from major mergers
- Need for improved modeling and better lensing data



### Idea to organise a workshop



- F: "Hey Subir, how about we apply to [theoretical physics institute] for a topical workshop on self-interacting dark matter?"
- S: "Let's do the workshop at Niels Bohr International Academy instead. Money is not a problem."

# Highlight 1: Full-day excursion to Lousiana







## Highlight 2: New data from Abell 3827



## Highlight 2: New data from Abell 3827

#### Dark matter dynamics in Abell 3827: new data consistent with standard Cold Dark Matter

Richard Massey<sup>1,2\*</sup>, David Harvey<sup>3</sup>, Jori Liesenborgs<sup>4</sup>, Johan Richard<sup>5</sup>, Stuart Stach<sup>2</sup>, Mark Swinbank<sup>2</sup>, Peter Taylor<sup>6</sup>, Liliya Williams<sup>7</sup>, Douglas Clowe<sup>8</sup>, Frédéric Courbin<sup>3</sup>, Alastair Edge<sup>2</sup>, Holger Israel<sup>1,9</sup>, Mathilde Jauzac<sup>1,2,10</sup>, Rémy Joseph<sup>3</sup>, Eric Jullo<sup>11</sup>, Thomas D. Kitching<sup>4</sup>, Adrienne Leonard<sup>12</sup>, Julian Merten<sup>13,14</sup>, Daisuke Nagai<sup>15</sup>, James Nightingale<sup>2</sup>, Andrew Robertson<sup>1</sup>, Luis Javier Romualdez<sup>16,17</sup>, Prasenjit Saha<sup>18</sup>, Renske Smit<sup>19</sup>, Sut-Ieng Tam<sup>2</sup> & Eric Tittley<sup>20</sup>

"The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images"





"Our new analysis shows that there is no statistically significant offset between galaxies and their dark matter in Abell 3827, projected onto the plane of the sky."





### Subject: Bon voyage



Many thanks to all of you for making this a real workshop. Our idea of bringing astronomers and particle phenomenologists together did seem to work ... I do believe we learnt a lot from each other and picked up new ideas to pursue.

Hope you had a great time in Copenhagen and wish you a good trip back home!

Subir





Constraints from merging clusters imply that velocity-dependent self-interaction cross section is required to address small-scale problems

Obtaining positive evidence for dark matter self-interactions from major mergers appears challenging

Lots of recent activity on understanding core formation and collapse in dwarf galaxies and Milky Way satellites

## **Gravothermal collapse**



- Cores created by DM self-interactions are not stable
- Once the inner region is fully thermalised, the direction of the heat flow reverses and the central region starts cooling down
- After sufficiently long times (or for very large cross sections) cores experience gravitational collapse and cusps reappear
  - $\rightarrow$  gravothermal catastrophe



## The impact of tidal forces



If the outer parts of a DM halo are stripped by tidal forces (e.g. from a nearby galaxy), the heat loss increases and core collapse accelerates



High concentration halos become even denser while low concentration halos are disrupted

Sameie et al., arXiv:1904.07872; FK et al., arXiv: 1904.10539

Moreover, central density of a Milky Way satellite depends on its precise orbit (i.e. the pericenter distance)

Possible explanation of the observed diversity of MW satellites

Valli & Yu, arXiv:1711.03502

### **Two outstanding questions**



How to simulate core formation for frequent DM self-interactions?

How to match rare and frequent DM self-interactions?

# Simulating frequent self-interactions

Naive implementation of drag force leads to continuous energy loss and the collapse of dark matter haloes

Key idea: Re-inject dissipated energy as "heat"

### N-body simulations of dark matter with frequent self-interactions

Moritz S. Fischer, <sup>1</sup>\* Marcus Brüggen, <sup>1</sup> Kai Schmidt-Hoberg, <sup>2</sup> Klaus Dolag, <sup>3,4</sup> Felix Kahlhoefer, <sup>5</sup> Antonio Ragagnin, <sup>6,7</sup> Andrew Robertson<sup>8</sup> <sup>1</sup>Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany <sup>2</sup>Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany <sup>3</sup>Universitäts-Sternwarte München, Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München, Germany <sup>4</sup>Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany <sup>5</sup>Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany <sup>6</sup>INAF – Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy <sup>7</sup>Institute for Fundamental Physics of the Universe (IFPU), Via Beirut 2, I-34014 Trieste, Italy <sup>8</sup>Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, UK





# Matching rare & frequent self-interactions



Landau & Lifshitz Volume 10, Chapter 1, Section 10, Problem 1: Heat conductivity is governed by the effective cross section

$$\sigma_{\kappa}(r) = \frac{2\int v^2 dv d\cos\theta \frac{d\sigma}{d\cos\theta} \sin^2\theta v^5 \exp\left[-\frac{v^2}{4\sigma_{1\mathrm{D}}^2(r)}\right]}{\int v^2 dv d\cos\theta \sin^2\theta v^5 \exp\left[-\frac{v^2}{4\sigma_{1\mathrm{D}}^2(r)}\right]}$$

Different microscopic models that have the same effective cross section predict the same rate of core formation and core collapse

Outmezguine et al., arXiv:2204.06568, Yang & Yu, arXiv:2205.03392

Work in preparation with M. Fischer, Sabarish, L. Kasselmann, M. Brüggen, K. Dolag, A. Ragagnin, A. Robertson, K. Schmidt-Hoberg





### "If you're referring to the incident with the Dragon, I was barely involved. All I did was give your uncle a little nudge out of the door."





...for giving me a little nudge in an exciting direction!

Your nudge led to  $\sim$ 15 new collaborators, 10 publications, an awesome workshop in Copenhagen and tons of stimulating discussions and ideas

Whether or not dark matter is self-interacting remains to be seen...