Tilted universes and the deceleration parameter

Christos G. Tsagas

Department of Physics Aristotle University of Thessaloniki, Greece

SubirFest2023, Oxford, UK

Work funded by HFRI

▲御 ▶ ▲ 臣 ▶ 二 臣

Motivation

Observational considerations

- Bulk peculiar motions appear to be the norm rather than the exception.
- Typical bulk-flow sizes and speeds are \sim 100 Mpc and \sim 100 km/sec.
- No "real" observer in the universe seems to follow the CMB frame.
- Relative motions can "contaminate" the observations.

Theoretical considerations

- Most theoretical cosmological studies bypass peculiar motions.
- The few and sparse studies of peculiar flows are typically Newtonian.

Method & aims

- Employ a "tilted", almost-FRW universe.
- Use relativistic linear cosmological perturbation theory.
- Introduce CMB and bulk-flow observers, with u_a and \tilde{u}_a .

- Compare the mean kinematics of the two frames.
- Focus on the deceleration parameters.

Spacetime splitting

4-velocity boost

$$\begin{split} \tilde{u}_a &= \gamma (u_a + \tilde{v}_a) \,, \end{split}$$
where $u_a u^a &= -1 = \tilde{u}_a \tilde{u}^a, \ u_a \tilde{v}^a = 0$
and $\cosh \beta = \gamma$
When $\tilde{v}^2 &= \tilde{v}_a \tilde{v}^a \ll 1, \cosh \beta = \gamma \simeq 1.$

Temporal and spatial derivative operators							
Time derivatives:	$\dot{u} = u^a \nabla_a$	and	${}^{\prime}= ilde{u}^{a} abla_{a}$.				
Spatial derivatives:	$D_a = h_a{}^b \nabla_b$	and	$\tilde{\mathrm{D}}_{a}=\tilde{h}_{a}{}^{b}\nabla_{b},$				
with	$h_{ab}=g_{ab}+u_au_b$	b and	$ ilde{h}_{ab}=g_{ab}+ ilde{u}_a ilde{u}_b.$				

▲御 ▶ ▲ 臣 ▶ 二 臣

Dynamic variables

CMB frame

$$T_{ab} = \rho u_a u_b + p h_{ab} + 2q_{(a}u_{b)} + \pi_{ab} \,,$$

where ρ is the density, p is the pressure, q_a is the flux, π_{ab} is the viscosity.

Tilted frame

$$T_{ab} = \tilde{
ho}\tilde{u}_a\tilde{u}_b + \tilde{
ho}\tilde{h}_{ab} + 2\tilde{q}_{(a}\tilde{u}_{b)} + \tilde{\pi}_{ab}$$

Linear relations

On Friedmann backgrounds, to first approximation

$$\tilde{
ho} =
ho \,, \qquad ilde{
ho} =
ho \,, \qquad ilde{q}_a = q_a - (
ho +
ho) \tilde{v}_a \qquad and \qquad ilde{\pi}_{ab} = \pi_{ab}$$

Only one observer "sees" the cosmic fluid as perfect (unless $p = -\rho$).

Assuming that $q_a = 0 = \pi_{ab}$ in the CMB frame and also setting p = 0, gives

 $\tilde{\rho} = \rho$, $\tilde{\rho} = 0$, $\tilde{q}_a = -\rho \tilde{v}_a$ and $\tilde{\pi}_{ab} = 0$,

in the tilted coordinate system.

Conservation laws

Energy & momentum conservation

On an FRW background in the absence of pressure but in the presence of peculiar flows,

 $\tilde{
ho}' = -3H\tilde{
ho} - \tilde{D}^a \tilde{q}_a$ and $ho \tilde{A}_a = -\tilde{q}'_a - 4H\tilde{q}_a$,

relative to the tilted frame.

The terms in red reflect the peculiar-flux contribution to the gravitational field.

(i.e. fluxes gravitate)

The 4-acceleration

The 3-gradient of the energy conservation combines with the momentum conservation to give

$$\tilde{A}_{a} = \frac{1}{3H} \tilde{D}_{a} \tilde{\vartheta} - \frac{1}{3aH} \left(\tilde{\Delta}_{a}' + \tilde{Z}_{a} \right) \neq 0, \qquad (1)$$

to linear order and in the coordinate system of the bulk-flow observers.

Here, $\tilde{\Delta}_a$ and $\tilde{\mathcal{Z}}_a$ monitor spatial inhomogeneities in the density of the matter and in the volume expansion of the universe respectively. Also, $\tilde{\vartheta} = \tilde{D}^a \tilde{v}_a$ with $\tilde{\vartheta} \ge 0$.

The Raychaudhuri equation(s)

CMB frame

In the absence of pressure

$$\dot{\Theta} = -rac{1}{3}\,\Theta^2 - rac{1}{2}\,
ho \ \Rightarrow \ rac{1}{3}\Theta^2 q = rac{1}{2}\,
ho \,,$$

where $\Theta = D^a u_a > 0$ and $q = -[1 + (3\dot{\Theta}/\Theta^2)]$ is the deceleration parameter.

Tilted frame

In the absence of pressure, but in the presence of peculiar motions

$$ilde{\Theta}' = -rac{1}{3}\, ilde{\Theta}^2 - rac{1}{2}\, ilde{
ho} - ilde{\mathrm{D}}^a ilde{A}_a \, \Rightarrow \, rac{1}{3}\, ilde{\Theta}^2 ilde{q} = rac{1}{2}\, ilde{
ho} - ilde{\mathrm{D}}^a ilde{A}_a$$

with $\tilde{\Theta} = \tilde{D}^{a}\tilde{u}_{a} > 0$ and $\tilde{q} = -[1 + (3\tilde{\Theta}'/\tilde{\Theta}^{2})].$

Relating the deceleration parameters

Given that $\tilde{\Theta}=\Theta+\tilde{\vartheta}$ to linear order,

$$\tilde{q} = q - rac{1}{3H^2}\,\tilde{\mathrm{D}}^a\tilde{A}_a\,.$$

Therefore, $\tilde{q} \neq q$ due to relative-motion effects.

Relative-motion corrections to \tilde{q}

Comparing the deceleration parameters

Employing the linear expression (1) of \tilde{A}_a , leads to

$$\tilde{q} = q - \frac{1}{9H^3} \tilde{D}^2 \tilde{\vartheta} + \frac{1}{9} \left(\frac{\lambda_H}{\lambda_K}\right)^2 \left(\frac{\tilde{\Delta}'}{H} + \frac{\tilde{z}}{H}\right),$$

where $\tilde{D}^2 = \tilde{D}^a \tilde{D}_a$, $\lambda_H = 1/H$ and $\lambda_K = a/|K|$ (with $K = \pm 1$ and $\lambda_H/\lambda_K \ll 1$).

The scale-dependence of \tilde{q}

The 3-D Laplacian ensures a scale-dependent correction term, so that

$$ilde{q} = q + rac{1}{9} \left(rac{\lambda_H}{\lambda}
ight)^2 rac{ ilde{artheta}}{H}, \qquad ext{where} \qquad ilde{artheta}/H \ll 1 \,.$$

Qualitative results

- On large enough scales (with $\lambda \ge \lambda_H$), we find $\tilde{q} \to q$ (as expected).
- On sub-Hubble scales (with $\lambda \ll \lambda_H$) the correction term dominates at the critical length

$$\lambda_T = \sqrt{\frac{1}{9q} \frac{|\tilde{\vartheta}|}{H}} \,\lambda_H \,.$$

The "Transition Scale"

$\tilde{q} = \tilde{q}(\lambda_T)$

Employing the critical length λ_T , gives

$$ilde{q} = q \left[1 \pm \left(rac{\lambda_T}{\lambda}
ight)^2
ight] \, ,$$

where \pm denotes locally expanding/contracting (i.e. with $\tilde{\vartheta} \gtrless 0$ respectively) bulk flows.

Local over-deceleration vs local acceleration

• When $\lambda < \lambda_T$ and $\tilde{\vartheta} > 0$, we have

ĉ

$$q>2q$$
 $ightarrow$ over – decelerated expansion.

• When
$$\lambda < \lambda_T$$
 and $\tilde{\vartheta} < 0$, we have

 ${ ilde q} < 0 ~~
ightarrow$ accelerated expansion .

In the latter case λ_T marks the "Transition Scale", where \tilde{q} turns negative.

Generalising the FRW background

Tilted almost-FRW universes with $p \neq 0$ and $\Omega \neq 1$

Assuming that $\Lambda = 0$, to linear order,

$$\tilde{q} = q + \frac{2}{3} \left[1 - \frac{3}{2} c_s^2 + \frac{1}{6} \left(\frac{\lambda_H}{\lambda} \right)^2 \right] \frac{\tilde{v}}{H} + \frac{|1 - \Omega|}{9(1 + w)} \left[\frac{\tilde{\Delta}'}{H} - 3w\tilde{\Delta} + (1 + w)\frac{\tilde{z}}{H} \right],$$

where $c_s^2 = dp/d\rho < 1$ and $w = p/\rho$ (with -1 < w < 1). Also, $0 < \Omega < 1$ in open FRW models and $\Omega > 1$ in those with closed spatial sections.

On sub-Hubble scales with $\lambda \ll \lambda_H$

To leading order,

$$ilde{q} = q + rac{1}{9} \left(rac{\lambda_H}{\lambda}
ight)^2 rac{ ilde{artheta}}{H} \, ,$$

unless $\Omega \gg 1$ (i.e. for unrealistically high positive curvature).

The above reproduces the tilted EdS result.

Generalising to anisotropic tilted universes

Tilted almost-Bianchi universes with $\sigma \neq 0$

Assuming zero pressure and setting p = 0 and $\Omega_K \ll 1$,

$$\tilde{q} = q + \frac{2}{3} \left[1 + \frac{1}{6} \left(\frac{\lambda_H}{\lambda} \right)^2 + \frac{1}{2} \frac{\zeta}{H} \right] \frac{\tilde{\vartheta}}{H},$$

where ζ is the shear eigenvalue along \tilde{v}_a (i.e. $\sigma_{ab}\tilde{v}^b = \zeta \tilde{v}_a$).

The ratio ζ/H measures the anisotropy of the Bianchi universe.

On sub-Hubble scales with $\lambda \ll \lambda_H$

To leading order,

$$ilde{q} = q + rac{1}{9} \left(rac{\lambda_H}{\lambda}
ight)^2 rac{ ilde{artheta}}{H} \, ,$$

unless $\zeta/H \gg 1$ (i.e. for unrealistically high anisotropy).

The above also reproduces the tilted EdS result.

Estimating \tilde{q} and λ_T

Estimating $\tilde{\vartheta}$

On average, within the bulk flow,

$$ilde{artheta}\simeq\pmrac{\langle ilde{m{v}}
angle}{\lambda}\,,$$

where $\langle \tilde{\nu} \rangle$ is the mean bulk velocity and λ is the size of the bulk flow.

Using the bulk-flow surveys								
	for $q = 1/2$	and $H_0 \simeq 70 \text{ km/secMpc}$						
Survey	λ (Mpc)	$\langle v \rangle$ (km/s)	$ ilde{q}^{(+)}$	$ ilde{q}^{(-)}$	λ_T (Mpc)			
Nusser & Davis (2011)	280	260	+1.01	-0.01	282			
Colin, et al (2011)	250	260	+1.24	-0.24	304			
Scrimgeour, et al (2016) 200	240	+1.81	-0.81	323			
Watkins, et al (2023)	250	400	+1.48	-0.48	350			

Summary

Qualitative results

Relative-motion effects can increase/decrease the local value of q.

• $ilde{q} < q$ when $ilde{artheta} < 0.$

Quantitative results

- Relative-motion effects introduce a characteristic length scale λ_T.
- For $\lambda < \lambda_T$ and $\tilde{\vartheta} > 0$, we have "local" over-deceleration ($\tilde{q} > 2q$).
- For $\lambda < \lambda_T$ and $\tilde{\vartheta} < 0$, we have "local" acceleration ($\tilde{q} < 0$).

The effect is "local", but the affected scales are large enough (\sim few hundred $\rm Mpc)$ to make it look as a recent global event.

The bulk-flow contraction appears as acceleration of the surrounding universe.

Outlook

A possible scenario

- If there is no natural bias for expanding, or contracting, bulk flows on cosmological scales, there is 50% chance of living in one of them.
- Nearly half the observers in the universe will believe that the cosmos is over-decelerated.
- The other half will think that their universe is under-decelerated, or even accelerated in some cases.

Main predictions

- The \tilde{q} -profile: $\tilde{q} > 0$ when $z > z_{\tau}$ and $\tilde{q} < 0$ when $z < z_{\tau}$.
- The sky-distribution of \tilde{q} should contain a dipolar anisotropy.
- The \tilde{q} -dipole axis should lie fairly close to that of the CMB dipole.
- The magnitude of the dipole should drop with increasing scale/redshift.

Outlook

A possible scenario

- If there is no natural bias for expanding, or contracting, bulk flows on cosmological scales, there is 50% chance of living in one of them.
- Nearly half the observers in the universe will believe that the cosmos is over-decelerated.
- The other half will think that their universe is under-decelerated, or even accelerated in some cases.

Main predictions

- The \tilde{q} -profile: $\tilde{q} > 0$ when $z > z_{\tau}$ and $\tilde{q} < 0$ when $z < z_{\tau}$.
- The sky-distribution of \tilde{q} should contain a dipolar anisotropy.
- The \tilde{q} -dipole axis should lie fairly close to that of the CMB dipole.
- The magnitude of the dipole should drop with increasing scale/redshift.

 $Q_a^a = 3q$,

Anisotropies in the \tilde{q} -distribution

The deceleration tensor

Anisotropies in the universal deceleration/acceleration are monitored by the 3-D tensor

$$Q_{ab} = -\left(h_{ab} + rac{9}{\Theta^2} h_a{}^c h_b{}^d \dot{\Theta}_{cd}
ight), \qquad ext{with}$$

where q is the (scalar) deceleration parameter and

$$\Theta_{ab} = D_b u_a = \frac{1}{3} \Theta h_{ab} + \sigma_{ab} + \omega_{ab}$$
, with $\Theta_a{}^a = \Theta = 3H$,

is the expansion tensor.

Selecting a spatial direction

The deceleration/acceleration rate along any given spatial direction (n_a) is given by

$$Q_{ab}n^a n^b = q + \frac{9}{\Theta^2} \, \dot{\sigma}_{ab} n^a n^b \, .$$

In Friedmann models

$$Q_{ab} = qh_{ab}$$
 and $Q_{ab}n^a n^b = q$

in all directions (as expected).

Apparent dipole in the *q*-distribution

The deceleration tensor(s) in tilted universes

To linear order, comparing between the tilted and the CMB frames,

$$\begin{split} \tilde{\mathcal{Q}}_{ab}n^{a}n^{b} &= Q_{ab}n^{a}n^{b} + \frac{1}{H}n^{a}\tilde{\mathcal{D}}_{a}\left(\tilde{v}_{b}n^{b}\right) - \frac{1}{H^{2}}n^{a}\tilde{\mathcal{D}}_{a}\left(\tilde{v}_{b}'n^{b}\right) \\ &= q + \frac{1}{H}n^{a}\tilde{\mathcal{D}}_{a}\left(\tilde{v}\cos\phi\right) - \frac{1}{H^{2}}n^{a}\tilde{\mathcal{D}}_{a}\left(\tilde{v}'\cos\psi\right)\,,\end{split}$$

where ϕ is the angle between \tilde{v}_a and n_a and ψ between \tilde{v}'_a and n_a .

Doppler-like dipole due to relative motion.

In the simplest case,

$$\tilde{Q}_{ab}n^a n^b = q + rac{1}{H}n^a \tilde{\mathrm{D}}_a \left(\tilde{v} \cos \phi \right) \, ,$$

Therefore,

$$ilde{Q}_{ab} n^a n^b = q \pm rac{1}{H} n^a ilde{\mathrm{D}}_a ilde{v} \, ,$$

when $\tilde{v}_a \uparrow \uparrow n_a$ (+) and $\tilde{v}_a \uparrow \downarrow n_a$ (-).

Dipolar anisotropy along na.

