Tilted universes and the deceleration parameter

Christos G. Tsagas

Department of Physics
Aristotle University of Thessaloniki, Greece

Motivation

Observational considerations

- Bulk peculiar motions appear to be the norm rather than the exception.
- Typical bulk-flow sizes and speeds are $\sim 100 \mathrm{Mpc}$ and $\sim 100 \mathrm{~km} / \mathrm{sec}$.
- No "real" observer in the universe seems to follow the CMB frame.
- Relative motions can "contaminate" the observations.

Theoretical considerations

- Most theoretical cosmological studies bypass peculiar motions.
- The few and sparse studies of peculiar flows are typically Newtonian.

Method \& aims

- Employ a "tilted", almost-FRW universe.
- Use relativistic linear cosmological perturbation theory.
- Introduce CMB and bulk-flow observers, with u_{a} and \tilde{u}_{a}.

- Compare the mean kinematics of the two frames.
- Focus on the deceleration parameters.

Spacetime splitting

4-velocity boost

$$
\begin{gathered}
\tilde{u}_{a}=\gamma\left(u_{a}+\tilde{v}_{a}\right) \\
\text { where } u_{a} u^{a}=-1=\tilde{u}_{a} \tilde{u}^{a}, \quad u_{a} \tilde{v}^{a}=0 \\
\text { and } \cosh \beta=\gamma
\end{gathered}
$$

$$
\text { When } \tilde{v}^{2}=\tilde{v}_{a} \tilde{v}^{a} \ll 1, \cosh \beta=\gamma \simeq 1
$$

Bulk flows (D) in tilted universes

Temporal and spatial derivative operators

Time derivatives:

$$
=u^{a} \nabla_{a} \quad \text { and } \quad I^{\prime}=\tilde{u}^{a} \nabla_{a} .
$$

Spatial derivatives:

$$
\begin{array}{cll}
\mathrm{D}_{a}=h_{a}{ }^{b} \nabla_{b} & \text { and } & \tilde{\mathrm{D}}_{a}=\tilde{h}_{a}^{b} \nabla_{b} \\
h_{a b}=g_{a b}+u_{a} u_{b} & \text { and } & \tilde{h}_{a b}=g_{a b}+\tilde{u}_{a} \tilde{u}_{b} .
\end{array}
$$

with

Dynamic variables

CMB frame

$$
T_{a b}=\rho u_{a} u_{b}+p h_{a b}+2 q_{(a} u_{b)}+\pi_{a b}
$$

where ρ is the density, p is the pressure, q_{a} is the flux, $\pi_{a b}$ is the viscosity.

Tilted frame

$$
T_{a b}=\tilde{\rho} \tilde{u}_{a} \tilde{u}_{b}+\tilde{p} \tilde{h}_{a b}+2 \tilde{q}_{(a} \tilde{u}_{b)}+\tilde{\pi}_{a b} .
$$

Linear relations

On Friedmann backgrounds, to first approximation

$$
\tilde{\rho}=\rho, \quad \tilde{p}=p, \quad \tilde{q}_{a}=q_{a}-(\rho+p) \tilde{v}_{a} \quad \text { and } \quad \tilde{\pi}_{a b}=\pi_{a b}
$$

Only one observer "sees" the cosmic fluid as perfect (unless $p=-\rho$).
Assuming that $q_{a}=0=\pi_{a b}$ in the CMB frame and also setting $p=0$, gives

$$
\tilde{\rho}=\rho, \quad \tilde{p}=0, \quad \tilde{q}_{a}=-\rho \tilde{v}_{a} \quad \text { and } \quad \tilde{\pi}_{a b}=0,
$$

in the tilted coordinate system.

Conservation laws

Energy \& momentum conservation

On an FRW background in the absence of pressure but in the presence of peculiar flows,

$$
\tilde{\rho}^{\prime}=-3 H \tilde{\rho}-\tilde{D}^{a} \tilde{q}_{a} \quad \text { and } \quad \rho \tilde{A}_{a}=-\tilde{q}_{a}^{\prime}-4 H \tilde{q}_{a}
$$

relative to the tilted frame.
The terms in red reflect the peculiar-flux contribution to the gravitational field.
(i.e. fluxes gravitate)

The 4-acceleration

The 3-gradient of the energy conservation combines with the momentum conservation to give

$$
\begin{equation*}
\tilde{A}_{a}=\frac{1}{3 H} \tilde{D}_{a} \tilde{\vartheta}-\frac{1}{3 a H}\left(\tilde{\Delta}_{a}^{\prime}+\tilde{Z}_{a}\right) \neq 0 \tag{1}
\end{equation*}
$$

to linear order and in the coordinate system of the bulk-flow observers.
Here, $\tilde{\Delta}_{a}$ and $\tilde{\mathcal{Z}}_{a}$ monitor spatial inhomogeneities in the density of the matter and in the volume expansion of the universe respectively. Also, $\tilde{\vartheta}=\tilde{\mathrm{D}}^{2} \tilde{v}_{a}$ with $\tilde{\vartheta} \gtrless 0$.

The Raychaudhuri equation(s)

CMB frame

In the absence of pressure

$$
\dot{\Theta}=-\frac{1}{3} \Theta^{2}-\frac{1}{2} \rho \Rightarrow \frac{1}{3} \Theta^{2} q=\frac{1}{2} \rho,
$$

where $\Theta=\mathrm{D}^{a} u_{a}>0$ and $q=-\left[1+\left(3 \dot{\Theta} / \Theta^{2}\right)\right]$ is the deceleration parameter.

Tilted frame

In the absence of pressure, but in the presence of peculiar motions

$$
\tilde{\Theta}^{\prime}=-\frac{1}{3} \tilde{\Theta}^{2}-\frac{1}{2} \tilde{\rho}-\tilde{\mathrm{D}}^{a} \tilde{A}_{a} \Rightarrow \frac{1}{3} \tilde{\Theta}^{2} \tilde{q}=\frac{1}{2} \tilde{\rho}-\tilde{\mathrm{D}}^{a} \tilde{A}_{a}
$$

with $\tilde{\Theta}=\tilde{D}^{2} \tilde{u}_{a}>0$ and $\tilde{q}=-\left[1+\left(3 \tilde{\Theta}^{\prime} / \tilde{\Theta}^{2}\right)\right]$.

Relating the deceleration parameters

Given that $\tilde{\Theta}=\Theta+\tilde{\vartheta}$ to linear order,

$$
\tilde{q}=q-\frac{1}{3 H^{2}} \tilde{\mathrm{D}}^{\mathrm{a}} \tilde{A}_{a}
$$

Therefore, $\tilde{q} \neq q$ due to relative-motion effects.

Relative-motion corrections to \tilde{q}

Comparing the deceleration parameters

Employing the linear expression (1) of \tilde{A}_{a}, leads to

$$
\tilde{q}=q-\frac{1}{9 H^{3}} \tilde{D}^{2} \tilde{\vartheta}+\frac{1}{9}\left(\frac{\lambda_{H}}{\lambda_{K}}\right)^{2}\left(\frac{\tilde{\Delta}^{\prime}}{H}+\frac{\tilde{\mathcal{Z}}}{H}\right),
$$

where $\tilde{\mathrm{D}}^{2}=\tilde{\mathrm{D}}^{a} \tilde{\mathrm{D}}_{\mathrm{a}}, \lambda_{H}=1 / H$ and $\lambda_{K}=a /|K|\left(\right.$ with $K= \pm 1$ and $\left.\lambda_{H} / \lambda_{K} \ll 1\right)$.

The scale-dependence of \tilde{q}

The 3-D Laplacian ensures a scale-dependent correction term, so that

$$
\tilde{q}=q+\frac{1}{9}\left(\frac{\lambda_{H}}{\lambda}\right)^{2} \frac{\tilde{\vartheta}}{H}, \quad \text { where } \quad \tilde{\vartheta} / H \ll 1 .
$$

Qualitative results

- On large enough scales (with $\lambda \geq \lambda_{H}$), we find $\tilde{q} \rightarrow q$ (as expected).
- On sub-Hubble scales (with $\lambda \ll \lambda_{H}$) the correction term dominates at the critical length

$$
\lambda_{T}=\sqrt{\frac{1}{9 q} \frac{|\tilde{\vartheta}|}{H}} \lambda_{H} .
$$

The "Transition Scale"

$\tilde{q}=\tilde{q}\left(\lambda_{T}\right)$

Employing the critical length λ_{T}, gives

$$
\tilde{q}=q\left[1 \pm\left(\frac{\lambda_{T}}{\lambda}\right)^{2}\right]
$$

where \pm denotes locally expanding/contracting (i.e. with $\tilde{\vartheta} \gtrless 0$ respectively) bulk flows.

Having set $q=1 / 2$

Local over-deceleration vs local acceleration

- When $\lambda<\lambda_{T}$ and $\tilde{\vartheta}>0$, we have

$$
\tilde{q}>2 q \quad \rightarrow \quad \text { over }- \text { decelerated expansion } .
$$

- When $\lambda<\lambda_{T}$ and $\tilde{\vartheta}<0$, we have

$$
\tilde{q}<0 \quad \rightarrow \quad \text { accelerated expansion } .
$$

In the latter case λ_{T} marks the "Transition Scale", where \tilde{q} turns negative.

Generalising the FRW background

Tilted almost-FRW universes with $p \neq 0$ and $\Omega \neq 1$

Assuming that $\Lambda=0$, to linear order,

$$
\tilde{q}=q+\frac{2}{3}\left[1-\frac{3}{2} c_{s}^{2}+\frac{1}{6}\left(\frac{\lambda_{H}}{\lambda}\right)^{2}\right] \frac{\tilde{\vartheta}}{H}+\frac{|1-\Omega|}{9(1+w)}\left[\frac{\tilde{\Delta}^{\prime}}{H}-3 w \tilde{\Delta}+(1+w) \frac{\tilde{\mathcal{Z}}}{H}\right]
$$

where $c_{s}^{2}=\mathrm{d} p / \mathrm{d} \rho<1$ and $w=p / \rho$ (with $-1<w<1$). Also, $0<\Omega<1$ in open FRW models and $\Omega>1$ in those with closed spatial sections.

On sub-Hubble scales with $\lambda \ll \lambda_{H}$

To leading order,

$$
\tilde{q}=q+\frac{1}{9}\left(\frac{\lambda_{H}}{\lambda}\right)^{2} \frac{\tilde{\vartheta}}{H}
$$

unless $\Omega \gg 1$ (i.e. for unrealistically high positive curvature).
The above reproduces the tilted EdS result.

Generalising to anisotropic tilted universes

Tilted almost-Bianchi universes with $\sigma \neq 0$

Assuming zero pressure and setting $p=0$ and $\Omega_{K} \ll 1$,

$$
\tilde{q}=q+\frac{2}{3}\left[1+\frac{1}{6}\left(\frac{\lambda_{H}}{\lambda}\right)^{2}+\frac{1}{2} \frac{\zeta}{H}\right] \frac{\tilde{\vartheta}}{H},
$$

where ζ is the shear eigenvalue along \tilde{v}_{a} (i.e. $\sigma_{a b} \tilde{v}^{b}=\zeta \tilde{v}_{a}$).
The ratio ζ / H measures the anisotropy of the Bianchi universe.

On sub-Hubble scales with $\lambda \ll \lambda_{H}$

To leading order,

$$
\tilde{q}=q+\frac{1}{9}\left(\frac{\lambda_{H}}{\lambda}\right)^{2} \frac{\tilde{\vartheta}}{H},
$$

unless $\zeta / H \gg 1$ (i.e. for unrealistically high anisotropy).
The above also reproduces the tilted EdS result.

Estimating \tilde{q} and λ_{T}

Estimating $\tilde{\vartheta}$

On average, within the bulk flow,

$$
\tilde{\vartheta} \simeq \pm \frac{\langle\tilde{v}\rangle}{\lambda},
$$

where $\langle\tilde{v}\rangle$ is the mean bulk velocity and λ is the size of the bulk flow.

Using the bulk-flow surveys

$$
\text { for } q=1 / 2 \quad \text { and } \quad H_{0} \simeq 70 \mathrm{~km} / \mathrm{secMpc}
$$

Survey	$\lambda(\mathrm{Mpc})$	$\langle v\rangle(\mathrm{km} / \mathrm{s})$	$\tilde{q}^{(+)}$	$\tilde{q}^{(-)}$	$\lambda_{T}(\mathrm{Mpc})$
Nusser \& Davis (2011)	280	260	+1.01	-0.01	282
Colin, et al (2011)	250	260	+1.24	-0.24	304
Scrimgeour, et al (2016)	200	240	+1.81	-0.81	323
Watkins, et al (2023)	250	400	+1.48	-0.48	350

Summary

Qualitative results

- Relative-motion effects can increase/decrease the local value of q.
- $\tilde{q}>q$ when $\tilde{\vartheta}>0$.
- $\tilde{q}<q$ when $\tilde{\vartheta}<0$.

Quantitative results

- Relative-motion effects introduce a characteristic length scale λ_{T}.
- For $\lambda<\lambda_{T}$ and $\tilde{\vartheta}>0$, we have "local" over-deceleration ($\tilde{q}>2 q$).
- For $\lambda<\lambda_{T}$ and $\tilde{\vartheta}<0$, we have "local" acceleration ($\tilde{q}<0$).

The effect is "local", but the affected scales are large enough (\sim few hundred Mpc) to make it look as a recent global event.

The bulk-flow contraction appears as acceleration of the surrounding universe.

Outlook

A possible scenario

- If there is no natural bias for expanding, or contracting, bulk flows on cosmological scales, there is 50% chance of living in one of them.
- Nearly half the observers in the universe will believe that the cosmos is over-decelerated.
- The other half will think that their universe is under-decelerated, or even accelerated in some cases.

Main predictions
 0 The \tilde{q}-profile: $\tilde{q}>0$ when $z>z_{T}$ and $\tilde{q}<0$ when $z<z_{T}$
 - The sky-distribution of \tilde{q} should contain a dipolar anisotropy.
 - The \tilde{q} dipole axis should lie fairly close to that of the CMAB dipole.
 - The magnitude of the dipole should drop with increasing scale/redshift

Outlook

A possible scenario

- If there is no natural bias for expanding, or contracting, bulk flows on cosmological scales, there is 50% chance of living in one of them.
- Nearly half the observers in the universe will believe that the cosmos is over-decelerated.
- The other half will think that their universe is under-decelerated, or even accelerated in some cases.

Main predictions

- The \tilde{q}-profile: $\tilde{q}>0$ when $z>z_{T}$ and $\tilde{q}<0$ when $z<z_{T}$.
- The sky-distribution of \tilde{q} should contain a dipolar anisotropy.
- The \tilde{q}-dipole axis should lie fairly close to that of the CMB dipole.
- The magnitude of the dipole should drop with increasing scale/redshift.

Anisotropies in the \tilde{q}-distribution

The deceleration tensor

Anisotropies in the universal deceleration/acceleration are monitored by the 3-D tensor

$$
Q_{a b}=-\left(h_{a b}+\frac{9}{\Theta^{2}} h_{a}^{c} h_{b}^{d} \dot{\Theta}_{c d}\right), \quad \text { with } \quad Q_{a}^{a}=3 q
$$

where q is the (scalar) deceleration parameter and

$$
\Theta_{a b}=\mathrm{D}_{b} u_{a}=\frac{1}{3} \Theta h_{a b}+\sigma_{a b}+\omega_{a b}, \quad \text { with } \quad \Theta_{a}^{a}=\Theta=3 H
$$

is the expansion tensor.

Selecting a spatial direction

The deceleration/acceleration rate along any given spatial direction $\left(n_{a}\right)$ is given by

$$
Q_{a b} n^{a} n^{b}=q+\frac{9}{\Theta^{2}} \dot{\sigma}_{a b} n^{a} n^{b} .
$$

In Friedmann models

$$
Q_{a b}=q h_{a b} \quad \text { and } \quad Q_{a b} n^{a} n^{b}=q
$$

in all directions (as expected).

Apparent dipole in the q-distribution

The deceleration tensor(s) in tilted universes

To linear order, comparing between the tilted and the CMB frames,

$$
\begin{aligned}
\tilde{Q}_{a b} n^{a} n^{b} & =Q_{a b} n^{a} n^{b}+\frac{1}{H} n^{a} \tilde{D}_{a}\left(\tilde{v}_{b} n^{b}\right)-\frac{1}{H^{2}} n^{a} \tilde{D}_{a}\left(\tilde{v}_{b}^{\prime} n^{b}\right) \\
& =q+\frac{1}{H} n^{a} \tilde{D}_{a}(\tilde{v} \cos \phi)-\frac{1}{H^{2}} n^{a} \tilde{D}_{a}\left(\tilde{v}^{\prime} \cos \psi\right)
\end{aligned}
$$

where ϕ is the angle between \tilde{v}_{a} and n_{a} and ψ between \tilde{v}_{a}^{\prime} and n_{a}.

Doppler-like dipole due to relative motion.

In the simplest case,

$$
\tilde{Q}_{a b} n^{a} n^{b}=q+\frac{1}{H} n^{a} \tilde{D}_{a}(\tilde{v} \cos \phi)
$$

Therefore,

$$
\tilde{Q}_{a b} n^{a} n^{b}=q \pm \frac{1}{H} n^{a} \tilde{D}_{a} \tilde{v}
$$

when $\tilde{v}_{a} \uparrow \uparrow n_{a}(+)$ and $\tilde{v}_{a} \uparrow \downarrow n_{a}(-)$.
Dipolar anisotropy along n_{a}.

