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Primordial Black Holes and Stochastic Inflation:

Noise terms can be important 

1. Brief overview - standard cosmological model and inflation.

2. What are and why PBHs ?

3. Enhancing the spectrum of primordial fluctuations on small scales. 

4. Ultra Slow Roll Inflation

5. The Stochastic inflation formalism and the importance of noise

6. Realistic slow roll into USR type behaviour



A few preliminaries
We live in a large old universe, at least 13.8bn years old, which is expanding, in fact accelerating


It is described on large scales by the homogeneous and isotropic FLRW metric

Introduction: Our Universe

Our Universe is big, old, evolving and expanding for
the past 13.8 billion years (at least).

ds2 = �dt2 + a
2(t)

⇥
dx2 + dy2 + dz2

⇤
FLRW metric

‘a(t)’ Scale factor of the universe

Expansion rate H =
ȧ

a
> 0 Hubble

Growth of structure via gravitational
amplification/instability of initial tiny inhomogeneities.
Universe seems to be accelerating twice: Once at the
very early times and again closer to the present epoch
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Where a(t) is the scale factor of the universe allowing us to describe it’s expansion via the Hubble parameter
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Growth of structure is from gravitational amplification of initial instabilities associated with tiny initial homogeneities 


The universe appears to be accelerating today, as it may have been in the very earliest moments - although at dramatically different rates.  
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ä

a
> 0

Topic: Inflation: the Early Accelerating Epoch
Swagat Saurav Mishra, CAPT, Nottingham PBHs and Tail of PDF

Acceleration in the early universe is known as Inflation and driven by the potential energy of the inflaton

Acceleration today is not called anything in particular and we don’t know what is driving it either - we call it dark energy, but it could be a potential 

energy, modified kinetic energy, modified gravity or a cosmological constant ! 




Standard model of cosmology - Flat ΛCDM model
Provides excellent description of the large scale evolution of our Universe from about 1 sec to 13.8 bn years


Based on a number of key assumptions - what is the universe made of ?


Standard model of particle physics


Dark matter made of cold non-relativistic particles


Dark Energy is a Cosmological constant Λ

More key assumptions - initial conditions :


Expanding initial conditions (what banged ?)


Homogeneous and isotropic on large scales


Universe is spatially flat 


Almost scale invariant, nearly Gaussian and adiabatic initial density fluctuations

Led to the idea behind the Inflationary Universe = a short period of accelerated expansion of space between the GUT and EWK era in which 


aend > e60 aini 


Setting the initial conditions for the Hot Big Bang period




numerically compute the noise matrix elements for a slow-roll potential as well as a potential
with a slow-roll violating feature in Sec. 4.2.1 before proceeding to carry out a thorough
analytical treatment in Sec. 4.2.2 for instantaneous transitions between different phases during
inflation. We discuss the potential implications of our results for the computation of PBH
mass fraction and spell out a number of complexities associated with the computation in
Sec. 5 before concluding with a summary of our main results in Sec. 6. Appendix A provides a
derivation of the Mukhanov-Sasaki equation in spatially flat gauge. Appendix B deals with the
analytical solutions of the Mukhanov-Sasaki equation in the absence of any transition, while
Appendix C provides analytical expressions for the noise matrix elements in the super-Hubble
limit. Appendices D and E are dedicated to the dynamics during instantaneous transitions.

We work in natural units with c = ~ = 1 and define the reduced Planck mass to be
mp ⌘ 1/

p
8⇡G = 2.43 ⇥ 1018 GeV. We assume the background Universe to be described

by a spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric with signature
(�,+,+,+). An overdot (.) denotes derivative with respect to cosmic time t, while an overdash
(
0
) denotes derivative with respect to the conformal time ⌧ .

2 Inflationary dynamics beyond slow roll

We focus on the inflationary scenario of a single canonical scalar field � with a self-interaction
potential V (�) which is minimally coupled to gravity. The system is described by the action
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where R is the Ricci scalar and gµ⌫ is the metric tensor. Specializing to the spatially flat
FLRW background metric
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where H ⌘ ȧ/a and V,� ⌘ dV/d�.
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Ḣ

H2
=

1

2m2
p

�̇
2

H2
, (2.6)

⌘H = �
�̈

H�̇
= ✏H +

1

2✏H

d✏H
dN

, (2.7)

– 5 –

numerically compute the noise matrix elements for a slow-roll potential as well as a potential
with a slow-roll violating feature in Sec. 4.2.1 before proceeding to carry out a thorough
analytical treatment in Sec. 4.2.2 for instantaneous transitions between different phases during
inflation. We discuss the potential implications of our results for the computation of PBH
mass fraction and spell out a number of complexities associated with the computation in
Sec. 5 before concluding with a summary of our main results in Sec. 6. Appendix A provides a
derivation of the Mukhanov-Sasaki equation in spatially flat gauge. Appendix B deals with the
analytical solutions of the Mukhanov-Sasaki equation in the absence of any transition, while
Appendix C provides analytical expressions for the noise matrix elements in the super-Hubble
limit. Appendices D and E are dedicated to the dynamics during instantaneous transitions.

We work in natural units with c = ~ = 1 and define the reduced Planck mass to be
mp ⌘ 1/

p
8⇡G = 2.43 ⇥ 1018 GeV. We assume the background Universe to be described

by a spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric with signature
(�,+,+,+). An overdot (.) denotes derivative with respect to cosmic time t, while an overdash
(
0
) denotes derivative with respect to the conformal time ⌧ .

2 Inflationary dynamics beyond slow roll

We focus on the inflationary scenario of a single canonical scalar field � with a self-interaction
potential V (�) which is minimally coupled to gravity. The system is described by the action

S[gµ⌫ ,�] =

Z
d4x

p
�g

"
m

2
p

2
R �

1

2
@µ�@⌫� g

µ⌫
� V (�)

#
, (2.1)

where R is the Ricci scalar and gµ⌫ is the metric tensor. Specializing to the spatially flat
FLRW background metric

ds2 = �dt2 + a
2(t)

⇥
dx2 + dy2 + dz2

⇤
, (2.2)

the evolution equations for the scale factor, a(t), and inflaton, �(t), are

H
2

⌘
1

3m2
p

⇢� =
1

3m2
p


1

2
�̇
2 + V (�)

�
, (2.3)
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ä

a
� H

2 = �
1

2m2
p

�̇
2
, (2.4)

�̈+ 3H�̇+ V,�(�) = 0 . (2.5)

where H ⌘ ȧ/a and V,� ⌘ dV/d�.
The slow-roll regime of inflation is usually characterised by the first two kinematic Hubble

slow-roll parameters ✏H and ⌘H , defined by

✏H = �
Ḣ
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Inflation - brief recap 
What we know from Observations
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Einstein’s equations assuming scalar field dominates the energy density
Source of Inflation: A Scalar Field
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Inflation can occur when potential dominated 

When 
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with nearly flat potential dominating we obtain nearly exponential expansion at the background level 
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Inflation - produces the initial seeds for structure to grow through Quantum Fluctuations 

Quantum Fluctuations during Inflation

System = Gravity (gµ⌫) + Scalar Field (�)
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(Later becomes density and temperature fluctuations)

2 Tensor Perturbations (Transverse, traceless hij(t, ~x) – relic
Gravitational Waves)
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Action for gravity plus inflaton

Metric including fluctuations
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When mass of inflaton is small compared to Hubble rate : m<<H

Comoving curvature perturbation exists - 

will become density and temperature fluctuations

Tensor perturbations which will become relic gravitational waves
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Inflation - allows us to predict the form of the fluctuations for a given model 

In particular during slow roll inflation, where the potential is flat enough and dominates the energy density
Inflationary Power-spectrum
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We have

We quantify the power spectrum and deviations from 
scale invariance in terms of slow roll parameters 
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The Power Spectrum for scalar and tensor fluctuations on large scales 
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CMB observations:
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Scalar Spectral index:

Red tilt Tensor spectra index:
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Prediction is nearly scale invariant and are very small on large scales 

Slow roll predictions: nS = �4✏H + 2⌘H , n⌧ = �2✏H , r ⌘ A⌧

AS

= 16✏H⇤

1



Behaviour of fluctuations: Causal diagram

Scale factor a

C
o
m

o
v
in

g
H

u
b
b
le

R
a
d
iu

s
1 aH

Pivot Scale ��
Exit Re-entry

Slow-Roll

Inflation

M
a
t
t
e
r
-
R
a
d
ia

t
io

n
E
q
u
a
li
t
y

B
u
n
c
h
-
D

a
v
ie

s
V
a
c
u
u
m

R
e
c
o
m

b
in

a
t
io

n
z

'
11

00

Scale enters in the future

Reheating

Radiative Epoch

E
n
d

o
f
In

fl
a
t
io

n

Swagat Saurav Mishra, CAPT, Nottingham PBHs and Tail of PDF

Credit: Swagat Mishra

Pictorially may help 
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The main way we constrain models of inflation from observation 



What we know from Observations

Small scale power spectrum is not constrained!
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Observational Constraints on Power Spectrum - very little on small scales

Carr et al 2020; Green and Kavanagh 2020



Since LIGO’s amazing direct detection of coalescing BH binaries, PBHs have had a resurgence of interest.


For reviews and future directions see Green & Kavanagh [arXiv: 2007.10722], Carr & Kuhnel [arXiv:2006.028380, Bird et al [arXiv:2203.08967]

Form from over densities in early Universe - before nucleosynthesis - non-baryonic [Zel’dovich & Novikov; Hawking]

They evaporate (Hawking radiation), lifetime longer than age of Universe for M>1015g  — can make them a DM candidate [Hawking, Chapline]

Maybe some of the BHs in the binaries detected by LIGO-VIRGO are primordial [Bird et al, Clesse & Garcia-Bellido, Sasaki et al ] 

Formation

Favoured - collapse of large density perturbations (shortly after horizon entry) during radiation domination 

Also collapse of cosmic string loops [Hawking, Polnarev & Zemboricz], bubble collisions [Hawking, Moss & Stewart], 
fragmenting inflation condensates [Cotner & Kusenko]  

Threshold for PBH formation [Carr] : 𝛿≳𝛿c~w=p/⍴ = 1/3. — density contrast at horizon crossing, depends on shape of perturbation which depends on 
primordial power spectrum

PBH mass roughly equal to horizon mass
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PBHs as Dark Matter: Present day Abundance
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Present day bounds on PBHs as DM   

Green and Kavanagh 2020



Primordial Black Holes are really really cool ! 

• Formed very early - typically within the first few seconds of the Hot Big Bang phase !

• We can use them to probe very small early Universe physics.

• Hawking told us, they have a temperature, and they evaporate as well as accrete. 


• Hawking radiation - hard to detect.


Prologue

PBHs: BHs formed in the very Early Universe
) t ⌧ 1 minute!! (in the Hot Big Bang Phase)

Probing Small Scale Primordial Physics.

Observationally probing/testing Hawking Radiation,
Hawking Temperature is testable for sub-solar mass BHs.
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• Evaporation rate: ——> mass (t): ——-> lifetime:

• Initial mass of PBH evaporating 
today — about that of a mountain

• Mass at formation PBHs evaporating today formed around 10-23 sec into HBB phase  

[Hawking 1971, Carr, Hawking 1974, Hawking 1974, Page 1975] 



Initial PBH mass fraction (fraction of universe in regions dense enough to form PBHs)
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initial PBH mass fraction (fraction of universe in regions dense enough to form PBHs):

assuming a gaussian probability distribution:

σ(MH) (mass variance) 
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But PBH are matter, so in radiation their contribution to the energy density budget grows
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So  β  must be small but non-negligible  
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But PBH are matter, so in radiation their contribution to the energy density budget grows
Since PBHs are matter, during radiation domination the fraction of energy in PBHs 
grows with time:
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i.e. initial mass fraction must be small, but non-negligible.
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Was realised that PBHs are a cold dark matter (DM) candidate in the 1970s Hawking; Chapline 


Wave of interest in ~Solar mass PBHs as DM in late 1990s, generated by excess of LMC 
microlensing events in MACHO collaboration’s 2 year data set.

Nakamura et al. (1997): PBHs binaries form in the early Universe and (if they survive to the 
present day) GWs from their coalescence detectable by LIGO.


LIGO-Virgo, Elavsky

LIGO-Virgo-KAGRA, Geller

black holes

discovered

by LIGO-Virgo

-KAGRA
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Could (some of) the BHs in the LIGO-Virgo BH binaries be primordial? (and also a 
significant component of the DM?) Bird et al.; Clesse & Garcia-Bellido; Sasaki et al.

Black Hole Binaries discovered by LIGO-VIRGO-KAGRA  

Any of them PBHs ?  [Bird et al, Clesse & Garcia-Bellido, Sasaki et al ] 



But on CMB we know primordial perturbations have amplitude  �(MH) ⇠ 10�5 ) �(M) ⇠ erfc(105) ⇠ exp(�1010)

1

Totally negligible if initial perturbations were close to scale invariant. 

On CMB scales the primordial perturbations have amplitude


If the primordial perturbations are very close to scale-invariant the number of PBHs 
formed will be completely negligible:

To form an interesting number of PBHs the primordial perturbations must be 
significantly larger (σ2(MH)~0.01) on small scales than on cosmological scales.
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One approach — introduce non-gaussianity. PBHs form from rare large density 
fluctuations arising during inflation, change the shape of the tail of the probability 

distribution —> can significantly affect the PBH distribution   



numerically compute the noise matrix elements for a slow-roll potential as well as a potential
with a slow-roll violating feature in Sec. 4.2.1 before proceeding to carry out a thorough
analytical treatment in Sec. 4.2.2 for instantaneous transitions between different phases during
inflation. We discuss the potential implications of our results for the computation of PBH
mass fraction and spell out a number of complexities associated with the computation in
Sec. 5 before concluding with a summary of our main results in Sec. 6. Appendix A provides a
derivation of the Mukhanov-Sasaki equation in spatially flat gauge. Appendix B deals with the
analytical solutions of the Mukhanov-Sasaki equation in the absence of any transition, while
Appendix C provides analytical expressions for the noise matrix elements in the super-Hubble
limit. Appendices D and E are dedicated to the dynamics during instantaneous transitions.

We work in natural units with c = ~ = 1 and define the reduced Planck mass to be
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p
8⇡G = 2.43 ⇥ 1018 GeV. We assume the background Universe to be described

by a spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric with signature
(�,+,+,+). An overdot (.) denotes derivative with respect to cosmic time t, while an overdash
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0
) denotes derivative with respect to the conformal time ⌧ .

2 Inflationary dynamics beyond slow roll
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where N = ln(a/ai) is the number of e-folds of expansion during inflation with ai the ini-
tial scale factor at some early epoch during inflation before the Hubble-exit of CMB scale
fluctuations. The slow-roll conditions correspond to

✏H , ⌘H ⌧ 1 . (2.8)

It follows from the definition of the Hubble parameter, H, and ✏H in Eq. (2.6), that the
condition for the Universe to accelerate, ä > 0, is ✏H < 1. Before proceeding further, we
remind the reader of the distinction between the quasi-de Sitter (qdS) and slow-roll (SR)
approximations.

• Quasi-de Sitter inflation corresponds to the condition ✏H ⌧ 1.

• Slow-roll inflation corresponds to both ✏H , ⌘H ⌧ 1.

Hence, one can deviate from the slow-roll regime by having |⌘H | � 1 while still main-
taining the qdS expansion by keeping ✏H ⌧ 1, which is exactly what happens during ultra
slow-roll (USR) inflation. This distinction will be important for the rest of this paper. Under
either of the aforementioned assumptions, the conformal time, ⌧ , is given by

�⌧ '
1

aH
. (2.9)

As discussed in Sec. 1, in order to facilitate PBH formation, we need to significantly
amplify the scalar power at small-scales which can be achieved by the presence of a feature in
the inflaton potential, such as an inflection point-like feature (as shown in Fig. 1) for which
V,� ⌧ 3H�̇. The following criteria need to be satisfied for an inflationary potential to be
compatible with observations on cosmological scales [34] while also generating perturbations
on smaller scales that are large enough to form an interesting abundance of PBHs:

• At the CMB pivot scale, k⇤ = (aH)⇤ = 0.05 Mpc�1, the amplitude of the scalar power
spectrum is

P⇣(k⇤) = 2.1 ⇥ 10�9
, (2.10)

with the scalar spectral index n
S

and tensor-to-scalar ratio r satisfying

n
S
(k⇤) 2 [0.957, 0.975] , r(k⇤)  0.036 at 95% C.L . (2.11)

• A feature in V (�) on a smaller scale k � k⇤ (closer to the end of inflation Ne < N⇤) to
enhance the primordial scalar power spectrum by a factor of roughly 107 with respect
to its value at the CMB pivot scale. Here Ne is the number of e-folds before the end
of inflation and N⇤ is the value of Ne when the CMB pivot scale made its Hubble-exit.
Typically N⇤ 2 [50, 60] depending on the reheating history of the Universe (see Ref. [78]).
Throughout this work we take N⇤ = 60.

• The potential steepens, so that inflation ends. Reheating (and the transition to the
subsequent radiation dominated epoch) then occurs as the field oscillates around a
minimum in the potential.

– 6 –

Inflation - second brief recap What we know from Observations
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Inflationary model building for PBHs

Inflaton potential featuring an approximate inflection point
or a local bump/dip at low scales slows down the inflaton
leading to appreciable enhancement of scalar power-spectrum
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PBH formation requires enhancement of the inflationary power spectrum by a factor of 107 
within less than 40 e-folds of expansion, the quantity Δ ln ε /Δ N, hence |ηH| must grow to 
be of order unity, so violate the second slow roll condition. A flat plateau like region in the 

potential can allow this. 


Ultra Slow roll inflation [Kinney (2005), Inoue and Yokoyama (2002)]


At intermediate field values, inflaton enters a transient period of USR. Since V’(ɸ)~0, 


�̈+ 3H�̇ = 0 ) ��̈/H�̇ = +3, hence ⌘H = +3 (during USR)

1

Figure 2: A zoomed-in version of Fig. 1 in order to schematically illustrate the intermediate
flat quantum well feature (highlighted with pink shading) in the inflaton potential. The height
and width of the flat segment are denoted by Vwell and ��well respectively. After exiting the
first slow-roll phase (SR-I) near the CMB window, the inflaton enters the flat region at � = �en

at intermediate field values. During this USR phase, the effects of quantum diffusion might
become significant and hence one should use the stochastic inflation formalism to compute
the primordial PDF of ⇣. Later, the inflaton emerges from the USR phase to another slow-roll
phase (SR-II) at � = �ex, before the end of inflation.

Given that PBH formation requires the enhancement of the inflationary power spectrum
by a factor of 107 within less than 40 e-folds of expansion (see e.g. Ref. [79]), the quantity
� ln ✏H/�N , and hence |⌘H |, must grow to become of order unity, thereby violating the
second slow-roll condition in Eq. (2.8). In the particular case of a flat plateau region in the
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�̈+ 3H�̇ = 0 ) ��̈/(H �̇) = +3, leading to

⌘H = +3 (during USR). (2.12)

As a consequence, the inflaton speed drops exponentially with the number of e-folds during
this USR phase:

�̇ = �̇en e
�3H (t�ten) / e

�3N
, (2.13)

where �̇en is the entry velocity to the USR phase at time ten.
Since USR is a transient non-attractor phase, the inflaton dynamics during this phase

are sensitive to the initial conditions, in particular to the speed �̇en with which the inflaton
enters the plateau. In this context, the inflaton potential exhibits three important regimes,
namely, the slow-roll SR-I phase for � > �en around the CMB scale, the USR phase at some
intermediate field values �ex  �  �en, succeeded by the final SR-II phase for � < �ex before
the end of inflation at � = �end. Figure 2 schematically illustrates the three regimes. The
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flat regime (flat quantum well)3 is characterised by its width ��well = �en � �ex, and height,
Vwell. During this regime

�̇ = �̇en � 3H (� � �en) . (2.14)

The total number of e-folds of expansion during the USR period up to �, where �ex 

�  �en is given by

NUSR(�) =
1

3
log

⇣
⇡en

⇡

⌘
=

1

3
log

✓
⇡en

⇡en � 3 (� � �en)

◆
,

where

⇡ =
d�

dN
=

�̇

H
. (2.15)

NUSR(�) can be used in the ‘non-linear classical �N formalism’ to determine the PDF of
primordial fluctuations [49].

From the above expressions, it is clear that the dynamics of inflation during USR is
sensitive to the initial conditions {�en,⇡en}. Let us define the critical entry velocity �̇cr to be
the speed at which the inflaton must enter the flat quantum well in order to come to a halt
at �ex. From Eqs. (2.14) and (2.15) it follows that

�̇cr = �3H��well, ⇡cr = �3��well. (2.16)

If �̇en > �̇cr, then the classical speed of the inflaton is large enough to drive it all the way
across the quantum well, while for �̇en < �̇cr, the inflaton comes to a halt at some intermediate
point � 2 (�ex,�en). Another important constraint comes from requiring inflation to continue,
✏H < 1, hence from Eq. (2.6)

0  �̇en <

p
2Hmp (2.17)

In this Section, we have discussed the classical dynamics of the inflaton field beyond
slow roll, with the specific example of ultra slow-roll inflation across a flat potential well.
We now move on to describe the large-scale quantum dynamics of the inflaton field which is
coarse-grained over super-Hubble scales, using the stochastic inflation formalism. This will
enable us to study the PDF of the primordial fluctuations generated by the quantum diffusion
of the inflaton.

3 Quantum dynamics: stochastic inflation formalism

Stochastic inflation is an effective long wavelength IR treatment of inflation in which the
inflaton field is coarse-grained over super-Hubble scales k  � aH, with the constant � ⌧ 1.
On the other hand, the Hubble-exiting smaller scale UV modes are constantly converted into
IR modes due to the accelerated expansion during inflation. Hence the coarse-grained inflaton
field follows a Langevin-type stochastic differential equation featuring classical stochastic noise
terms sourced by the smaller scale UV modes, on top of the classical drift terms sourced by
the gradient of the self-interaction potential V,�(�).

3
Note that we refer to the flat USR regime as the ‘flat quantum well’ because the inflaton dynamics are

usually dominated by stochastic quantum diffusion, as discussed in the subsequent Sections.

– 8 –

flat regime (flat quantum well)3 is characterised by its width ��well = �en � �ex, and height,
Vwell. During this regime

�̇ = �̇en � 3H (� � �en) . (2.14)

The total number of e-folds of expansion during the USR period up to �, where �ex 

�  �en is given by

NUSR(�) =
1

3
log

⇣
⇡en

⇡

⌘
=

1

3
log

✓
⇡en

⇡en � 3 (� � �en)

◆
,

where

⇡ =
d�

dN
=

�̇

H
. (2.15)

NUSR(�) can be used in the ‘non-linear classical �N formalism’ to determine the PDF of
primordial fluctuations [49].

From the above expressions, it is clear that the dynamics of inflation during USR is
sensitive to the initial conditions {�en,⇡en}. Let us define the critical entry velocity �̇cr to be
the speed at which the inflaton must enter the flat quantum well in order to come to a halt
at �ex. From Eqs. (2.14) and (2.15) it follows that

�̇cr = �3H��well, ⇡cr = �3��well. (2.16)

If �̇en > �̇cr, then the classical speed of the inflaton is large enough to drive it all the way
across the quantum well, while for �̇en < �̇cr, the inflaton comes to a halt at some intermediate
point � 2 (�ex,�en). Another important constraint comes from requiring inflation to continue,
✏H < 1, hence from Eq. (2.6)

0  �̇en <

p
2Hmp (2.17)

In this Section, we have discussed the classical dynamics of the inflaton field beyond
slow roll, with the specific example of ultra slow-roll inflation across a flat potential well.
We now move on to describe the large-scale quantum dynamics of the inflaton field which is
coarse-grained over super-Hubble scales, using the stochastic inflation formalism. This will
enable us to study the PDF of the primordial fluctuations generated by the quantum diffusion
of the inflaton.

3 Quantum dynamics: stochastic inflation formalism

Stochastic inflation is an effective long wavelength IR treatment of inflation in which the
inflaton field is coarse-grained over super-Hubble scales k  � aH, with the constant � ⌧ 1.
On the other hand, the Hubble-exiting smaller scale UV modes are constantly converted into
IR modes due to the accelerated expansion during inflation. Hence the coarse-grained inflaton
field follows a Langevin-type stochastic differential equation featuring classical stochastic noise
terms sourced by the smaller scale UV modes, on top of the classical drift terms sourced by
the gradient of the self-interaction potential V,�(�).

3
Note that we refer to the flat USR regime as the ‘flat quantum well’ because the inflaton dynamics are

usually dominated by stochastic quantum diffusion, as discussed in the subsequent Sections.

– 8 –

Introducing features into the inflaton potential - to generate the PBH abundance

Critical entry velocity to 
just get across the 

plateau



Quantum dynamics — stochastic inflation formalism - non - perturbative approach to calc the full primordial PDF [Starobinsky 1982]


Effective long wavelength IR treatment of inflation, inflaton field is coarse grained over super Hubble scales k ≲ 𝜎aH, with const 𝜎 ≪1.


Hubble exiting smaller scale UV modes are constantly converted into IR modes due to accelerated expansion.


Coarse grained inflaton field follows a Langevin-type-stochastic differential equation with stochastic noise terms sourced by the smaller scale 


UV modes, on top of classical drift terms sourced by V’( ɸ).


Split the Heisenberg operators of the inflaton �̂(N, ~x) and its conjugate momentum ⇡̂� = d�̂/dN into the

corresponding IR {�̂, ⇧̂} and UV {'̂, ⇡̂} parts:

�̂ = �̂+ '̂ , ⇡̂� = ⇧̂+ ⇡̂

1

We start with the Hamiltonian equations [82] of the system, Eq. (2.1), for Heisenberg
operators of the inflaton �̂ and its momentum ⇡̂� = d�̂/dN

d�̂

dN
= ⇡̂� , (3.1)

d⇡̂�
dN

= � (3 � ✏H) ⇡̂� �
V,�

H2
, (3.2)

where we choose the number of e-folds N as our time evolution variable for �(N, ~x) and
⇡�(N, ~x) following Refs. [46, 54].

We split the inflaton �̂(N, ~x) and its conjugate momentum ⇡̂�(N, ~x) into the correspond-
ing IR {�̂, ⇧̂} and UV {'̂, ⇡̂} parts:

�̂ = �̂+ '̂ , ⇡̂� = ⇧̂+ ⇡̂ , (3.3)

where the UV fields are defined as

'̂(N, ~x) =

Z
d3~k

(2⇡)
3
2

W

✓
k

�aH

◆ h
�k(N) â~k e

�i~k.~x + �
⇤
k
(N) â†

~k
e
i~k.~x

i
, (3.4)

⇡̂(N, ~x) =

Z
d3~k

(2⇡)
3
2

W

✓
k

�aH

◆ h
⇡k(N) â~k e

�i~k.~x + ⇡
⇤
k
(N) â†

~k
e
i~k.~x

i
. (3.5)

Here W (k/�aH) is the ‘window function’ that selects out modes with k > �aH for the UV
modes. This coarse-graining guarantees that the IR fields {�̂, ⇧̂} are composed of modes
of super-Hubble wavelengths and hence can be treated as classical (stochastic) variables.
Substituting the expressions for the UV fields from Eqs. (3.4) and (3.5) into Eqs. (3.1) and
(3.2), the equations for the coarse-grained fields are [67]

d�̂

dN
= ⇧̂+ ⇠̂�(N) , (3.6)

d⇧̂

dN
= � (3 � ✏H) ⇧̂ �

V,�(�̂)

H2
+ ⇠̂⇡(N) , (3.7)

where the field and momentum noise operators ⇠̂�(N) and ⇠̂⇡(N) are given by

⇠̂�(N) = �

Z
d3~k

(2⇡)
3
2

d

dN
W

✓
k

�aH

◆ h
�k(N) â~k e

�i~k.~x + �
⇤
k
(N) â†

~k
e
i~k.~x

i
, (3.8)

⇠̂⇡(N) = �

Z
d3~k

(2⇡)
3
2

d

dN
W

✓
k

�aH

◆ h
⇡k(N) â~k e

�i~k.~x + ⇡
⇤
k
(N) â†

~k
e
i~k.~x

i
. (3.9)

We assume a window function which imposes a sharp cut off4 between the IR and UV
momentum space modes:

W

✓
k

�aH

◆
= ⇥

✓
k

�aH
� 1

◆
. (3.10)

4
This assumption has been questioned, especially because the sharp cut-off window function may not lead

to well-behaved coarse-grained field correlators in the physical space. See Refs. [71, 83, 84] for more discussion.
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�i~k.~x + ⇡
⇤
k
(N) â†
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Selects out modes with momentum k>𝜎aH

Stochastic Inflation: E↵ective IR description
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Here W (k/�aH) is the ‘window function’ that selects out modes with k > �aH for the UV
modes. This coarse-graining guarantees that the IR fields {�̂, ⇧̂} are composed of modes
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Substituting the expressions for the UV fields from Eqs. (3.4) and (3.5) into Eqs. (3.1) and
(3.2), the equations for the coarse-grained fields are [67]

d�̂

dN
= ⇧̂+ ⇠̂�(N) , (3.6)

d⇧̂

dN
= � (3 � ✏H) ⇧̂ �

V,�(�̂)

H2
+ ⇠̂⇡(N) , (3.7)

where the field and momentum noise operators ⇠̂�(N) and ⇠̂⇡(N) are given by

⇠̂�(N) = �

Z
d3~k

(2⇡)
3
2

d

dN
W

✓
k

�aH

◆ h
�k(N) â~k e
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momentum space modes:
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4
This assumption has been questioned, especially because the sharp cut-off window function may not lead

to well-behaved coarse-grained field correlators in the physical space. See Refs. [71, 83, 84] for more discussion.
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Hamiltonian equations for coarse grained (IR) fields are Langevin equation
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to well-behaved coarse-grained field correlators in the physical space. See Refs. [71, 83, 84] for more discussion.
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Assume Window function with sharp IR/UV cut-off

• Physically, the noise terms ⇠̂� and ⇠̂⇡ in the Langevin equations are sourced by the constant outflow of UV
modes into the IR modes

1

• As UV mode exits the cut-o↵ scale k = �aH to become part of the IR field on super-Hubble scales, IR

field receives a ‘quantum kick’ with typical amplitude ⇠
q
h0|⇠̂(N)⇠̂(N 0)|0i, where |0i is usually taken to be

the Bunch-Davies vacuum.

1

• Given that � ⌧ 1, this happens on ultra super-Hubble scales, where the UV modes must have already

become classical fluctuations..

1



With ⇠i = {⇠�, ⇠⇡}, equal-space noise correlators (auto-correlators) are

h⇠i(N) ⇠j(N
0)i = ⌃ij(N) �D(N �N 0) ,

where the noise correlation matrix ⌃ij is

⌃ij(N) = (1� ✏H)
k3

2⇡2
�ik(N)�⇤

jk
(N)

����
k=�aH

.

This is what I want to calculate ! But why ?

1

Equivalent Fokker-Planck equation - time evolution of the PDF of {�,⇧}, subject to appropriate bcds.

1

for some of the earlier attempts in this direction, while for a more concrete analysis beyond
slow-roll, see Ref. [63], and for state-of-the-art numerical simulations, relevant for determining
the PDF of primordial fluctuations, see Refs. [64, 68, 69, 72].

There is also an analytically concrete way to study this system, using the first-passage
time analysis which involves making a transition from the Langevin equations to an equivalent
second order partial differential Fokker-Planck equation (FPE) [40, 43, 88, 89], that describes
the time evolution of the PDF of the stochastic variables {�,⇧}, subject to appropriate
boundary conditions. Given our primary interest in computing the full PDF P [⇣] for PBH
formation, we take this route following Refs. [54, 57, 67].

The FPE corresponding to the Langevin equation, Eq. (3.11), takes the form

@

@N
P (�i;N) = LFP(�i) . P (�i;N) , (3.16)

where LFP(�i) is the second-order Fokker-Planck differential operator and P (�i;N) is the
probability density function of the stochastic process that is related to the probability of
finding the phase-space variables at a given value �i = {�,⇧} at some time N . However
such a quantity is not of primary concern to us since we are not interested in studying the
phase-space dynamics of the inflaton6. Rather, we are interested in finding the probability
distribution P�i

(N ) of the number of e-folds N . Note the important difference between
our time variable N and the stochastic variable N . N denotes the background expansion
of the Universe, while N is the number of e-folds of expansion obtained from the Langevin
equations with fixed boundary conditions in the IR field space, �en and �ex. The coarse-
grained curvature perturbation ⇣cg is related to the stochastic number of e-folds N via the
stochastic �N formalism [46, 54, 57, 67]

⇣cg ⌘ ⇣(�i) = N � hN (�i)i , (3.17)

with
hN (�i)i =

Z 1

0

N P�i
(N ) dN , (3.18)

where the PDF P�i
(N ) of the number of e-folds satisfies the adjoint FPE which we discuss

below in Sec. 3.2. Note that N (�i) and P�i
(N ) correspond to N (�,⇧) and P(�,⇧)(N )

respectively.

3.2 Adjoint Fokker-Planck equation and first-passage time analysis

The adjoint FPE for the PDF P�i
(N ) corresponding to the general Langevin equation,

Eq. (3.11), is given by

@

@N
P�i

(N ) =


Di

@

@�i

+
1

2
⌃ij

@
2

@�i@�j

�
P�i

(N ) . (3.19)

Our primary goal is to solve Eq. (3.19), with appropriate boundary conditions for �i ⌘

{�,⇧} in order to compute the PDF P�i
(N ) ⌘ P�,⇧(N ). A physically well-motivated set of

boundary conditions includes an absorbing boundary at smaller field values �(A) closer to the
end of inflation and a reflecting boundary at a larger field value �

(R) closer to the CMB scale.
The PDF at the boundaries satisfies

6
This would have been our primary goal if we were studying the initial conditions for inflation, or exit from

eternal inflation to a SR classical regime [90, 91].
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1. Absorbing boundary at �
(A)

P
�=�(A),⇧(N ) = �D(N ) , (3.20)

2. Reflecting boundary at �
(R)

@

@�
P
�=�(R),⇧(N ) = 0 . (3.21)

The absorbing boundary condition ensures that for � < �
(A), the dynamics is heavily

drift dominated and quantum diffusion effects are negligible. Similarly, the reflecting boundary
condition arises from assuming that the potential is steep enough in the region � > �

(R) so
that a freely diffusing inflaton can not climb back to a region of the potential beyond �

(R).
Both the boundary conditions play a crucial role in determining the functional form of the
PDF, thus affecting the PBH mass fraction.

A convenient method for determining the PDF involves considering the ‘characteristic
function’ (CF) �N (q;�i), given by 7

�N (q;�i) ⌘ he
i qN

i =

Z 1

�1
e
i qN

P�i
(N ) dN , (3.22)

which is the Fourier transform of the PDF P�i
(N ) w.r.t the dummy variable q (which is a

complex number in general). Hence the PDF is the inverse Fourier transform of the CF:

P�i
(N ) =

1

2⇡

Z 1

�1
e
�i qN

�N (q;�i) dq . (3.23)

Since the PDF satisfies the adjoint FPE, Eq. (3.19), the CF satisfies

Di

@

@�i

+
1

2
⌃ij

@
2

@�i@�j

+ iq

�
�N (q;�i) = 0 , (3.24)

which is a partial differential equation with one less dynamical variable than the adjoint FPE.
The corresponding boundary conditions, Eqs. (3.20) and (3.21), for the characteristic function
are given by

�N (q;�(A)
,⇧) = 1 ,

@

@�
�N (q;�(R)

,⇧) = 0 . (3.25)

The characteristic equation, Eq. (3.24), corresponding to a potential V (�) in a general
situation is quite difficult to solve. In practice, one has to make crucial approximations
regarding the classical drift Di and the quantum noise ⇠i. The most common approximation
used in the literature assumes that the noise matrix elements ⌃ij in Eq. (3.15) are of the de
Sitter-type, i.e. (see Sec. 4)

⌃�� = H/2⇡ , ⌃�⇡, ⌃⇡⇡ ' 0 . (3.26)
7
The subscript N in �N (q;�i) denotes that the characteristic function is obtained by taking the Fourier

transformation of the PDF with respect to N , and hence �N (q;�i) is in fact independent of N and only a

function of q, �.
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Closer to  ɸ at end of inflation 

Closer to  ɸ at cmb scale

It has the advantage of making the calculation of noise correlation matrix elements more
tractable.

Physically, the noise terms ⇠̂� and ⇠̂⇡ in the Langevin Eqs. (3.6) and (3.9) are sourced
by the constant outflow of UV modes into the IR modes, i.e. as a UV mode exits the cut-off
scale k = �aH to become part of the IR field on super-Hubble scales, the IR field receives a
‘quantum kick’ whose typical amplitude is given by ⇠

q
h0|⇠̂(N)⇠̂(N 0)|0i, where |0i is usually

taken to be the Bunch-Davies vacuum. Given that � ⌧ 1, this happens on ultra super-Hubble
scales, where the UV modes must have already become classical fluctuations5 due to the
rapid decline of the non-commutating parts of the fields {�k,⇡k} outside the Hubble radius
[85–87]. This leads to the classical stochastic description of the dynamics of the coarse-grained
quantum fields �̂, ⇧̂ as discussed in the following subsection(s).

3.1 Langevin equation

The Langevin equations corresponding to Eqs. (3.6) and (3.7) take the compact form

d�i

dN
= Di + ⇠i(N) (3.11)

with coarse-grained IR variables �i = {�,⇧} and the drift terms

Di =

⇢
⇧,� (3 � ✏H)⇧ �

V,�(�)

H2

�
, (3.12)

along with the noise operator terms ⇠i = {⇠�, ⇠⇡}.
In this compact notation the expressions for the noise operators, Eqs. (3.8) and (3.9),

become

⇠̂i(N) = �

Z
d3~k

(2⇡)
3
2

d

dN
W

✓
k

�aH

◆ h
�ik

(N) â~k e
�i~k.~x + �

⇤
ik
(N) â†

~k
e
i~k.~x

i
, (3.13)

with �ik
= {�k,⇡k} being the field and momentum mode functions respectively. Assuming

the sharp k-space window function, Eq. (3.10), it is easy to show that the equal-space noise
correlators (auto-correlators) take the form [82]

h⇠i(N) ⇠j(N
0)i = ⌃ij(N) �D(N � N

0) , (3.14)

where the noise correlation matrix ⌃ij has the form

⌃ij(N) = (1 � ✏H)
k
3

2⇡2
�ik

(N)�⇤
jk
(N)

����
k=�aH

. (3.15)

The stochastic nature of the noise leads to a probabilistic description of the system �i =
{�,⇧}. One approach to analyse the system is by solving the Langevin equation, Eq. (3.11),
numerically for many (tens of millions) stochastic realizations and then proceeding to compute
different moments of the physical (stochastic) variables. This method is direct, however
cumbersome, non-analytical and requires significant computational power. See Refs. [44, 45]

5
While the quantum-to-classical transition is still an open problem, the treatment of UV noise operators as

stochastic noise terms is ensured to be valid as long as the growing mode of �k is dominant over the decaying

mode on super-Hubble scales [59].
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where

The noise correlation matrix is important !



Characteristic function: �N (q;�i), given by Fourier transform of the PDF P�i(N )

�N (q;�i) ⌘ hei qN i =
Z 1

�1
ei qNP�i(N ) dN ,

CF then satisfies 
Di

@

@�i
+

1

2
⌃ij

@2

@�i@�j
+ iq

�
�N (q;�i) = 0 ,

with bcs

�N (q;�(A),⇧) = 1 ,
@

@�
�N (q;�(R),⇧) = 0 .

1

Usual approach: assume noise matrix elements ⌃ij are of the de Sitter-type:

⌃�� = (H/2⇡)2 , ⌃�⇡, ⌃⇡⇡ ' 0 .

1

Quantum di↵usion across a flat segment of the inflaton potential [Pattsion et al 2021]. Intro

f =
�� �ex

��well
, y =

⇧

⇡cr
, µ2 ' ��2

well

m2
p

1

vwell
, vwell = Vwell/m

4
p ,

f is the fraction of the flat well which remains to be traversed; y is the momentum relative to the critical
momentum, Vwell is the height of the flat quantum well.

1



Free stochastic di↵usion : ⇡en ⌧ ⇡cr ) yen ⌧ 1 �! the classical drift term can be ignored [Ezquiaga et
al [2020], Pattison et al [2021]]

Pf (N ) =
1X

n=0

An sin
h
(2n+ 1)

⇡

2
f
i
e�⇤n N ,

where

An = (2n+ 1)
⇡

µ2
, ⇤n = (2n+ 1)2

⇡2

4

1

µ2
,

For N � 1, PDF has an exponential tail

P�(N ) ' A0 e
�⇤0N .

1

We now specialise to the case of quantum diffusion across a flat segment of the inflaton
potential, as discussed in Sec. 2 and shown in Fig. 2. It is helpful to make a change of variables

f =
� � �ex

��well

, y =
⇧

⇡cr
, (3.27)

where f is the fraction of the flat well which remains to be traversed and y is the momentum
relative to the critical momentum defined in Eq. (2.16), the initial momentum for which the
fields comes to a halt at �ex. The CF, Eq. (3.24), then becomes (see Ref. [67])


1

µ2

@
2

@f2
� 3y

✓
@

@f
+

@

@y

◆
+ iq

�
�N (q; f, y) = 0 , (3.28)

where
µ
2

'
��

2

well

m2
p

1

vwell
, (3.29)

with vwell = Vwell/m
4
p, where Vwell is the height of the flat quantum well. The corresponding

boundary conditions now become

�N (q; 0, y) = 1 ,
@

@f
�N (q; 1, y) = 0 , (3.30)

Such a system has been solved [67] in two distinct limits, namely

• Free stochastic diffusion for which ⇡en ⌧ ⇡cr ) yen ⌧ 1, implying that the classical
drift term, Eq. (3.12), can be safely ignored, in which case the PDF takes the form (see
Ref. [57])

Pf (N ) =
1X

n=0

An sin
h
(2n+ 1)

⇡

2
f

i
e�⇤n N

, (3.31)

where
An = (2n+ 1)

⇡

µ2
, ⇤n = (2n+ 1)2

⇡
2

4

1

µ2
, (3.32)

(a) (b)

Figure 3: Left panel: the full PDF for the flat quantum well as a function of N for different
values of the initial condition � = �i, expressed in terms of f = �/��well (for simplicity, we
assume �ex = 0 here). Right panel: the full PDF as a function of initial field value � for
realizations which have different values of N .
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• But when power spectrum su�ciently amplified for an interesting abundance of PBHs, ⇡en ' ⇡cr ) yen ' 1.

1

• Then, both classical drift and stochastic di↵usion become important (at least initially during the entry
into the USR segment).

1

• Furthermore, the de Sitter approximations for the noise matrix elements might breakdown during the
transition into the USR phase [Ahmadi et al 2022] .

1

• Consequently, it becomes important to estimate the noise matrix elements more accurately.

1

In the rest of this paper, we carry out the first task of accurately computing the noise
matrix elements, first numerically in Sec. 4.2.1 for a potential with a slow-roll violating feature,
and then analytically in Sec. 4.2.2 for the case of instantaneous transitions between different
phases during inflation. We reserve the second task to an upcoming paper [77].

4 Noise matrix elements in stochastic inflation

In this section we calculate the expressions for the noise matrix elements ⌃ij , i.e. the correlators
of the field and momentum noise operators ⇠̂i = {⇠̂�, ⇠̂⇡}. We do this initially for standard
slow-roll inflation, and compare the estimates for ⌃ij computed using the pure de Sitter
approximation to those obtained using the slow-roll approximations.

The key equations that we use are the following: the definition of the noise operators,
Eq. (3.13), which along with a step-like k-space window function, Eq. (3.10), leads to the
noise correlators of Eq. (3.14), with the noise correlation matrix ⌃ij being given by Eq. (3.15).

It is important to note that these UV-noise mode functions are to be computed, not
at Hubble crossing, but at k = �aH, where they chronologically become part of the coarse-
grained IR field and momentum, and provide quantum kicks. Hence, in order to compute
the elements of the noise matrix ⌃ij , we need to compute the mode functions �ik

= {�k,⇡k}.
This can be done by solving the Mukhanov-Sasaki (MS) equation in terms of conformal time
⌧ defined in Eq. (2.9) 8

v
00
k
+

✓
k
2
�

z
00

z

◆
vk = 0 , (4.1)

where

z = amp

p
2✏H , (4.2)

z
00

z
= (aH)2


2 + 2✏H � 3⌘H + 2✏2H + ⌘

2

H � 3✏H⌘H �
1

aH
⌘
0
H

�
, (4.3)

with appropriate initial conditions. The expressions for the mode functions �ik
in the spatially

flat gauge9 are given by (see App. A)

�k =
vk

a
, ⇡k =

d

dN

⇣
vk

a

⌘
. (4.4)

From Sec. 3.2, it is clear that in order to accurately compute the noise matrix elements
⌃ij appearing in the adjoint FPE, Eq. (3.19), we need to solve the MS equation as accurately

8
Note that depending upon the situation, the MS equation, Eq. (4.1), written in terms of the number of

e-folds N ⇠ ln(a) as

d2
vk

dN2
+ (1 � ✏H)

dvk
dN

+

"✓
k

aH

◆2

� z
00

z

#
vk = 0

might be more useful. We note that in terms of N , the MS equation features a friction term, and both the terms

inside the square bracket evolve with time. However, in terms of conformal time, ⌧ , it is a simple harmonic

oscillator equation with time dependent mass terms (aH)�2
z
00
/z, while the comoving mode frequency k is

fixed, which is why we choose to work with conformal time.
9
In this work we compute the mode functions {�k,⇡k}, and hence the noise matrix elements, ⌃ij , in the

spatially flat gauge, while the Langevin equations are written in the uniform-N gauge. This introduces small

corrections to the noise terms which we assume to be negligible [59]. We discuss this further in Sec. 5.
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Case 1: Noise matrix elements in stochastic inflation with featureless potential – slow roll case

1

Evolution of modes {�k,⇡k} given via Mukhanov-Sasaki equation which in terms of conformal time ⌧ is

1

In the rest of this paper, we carry out the first task of accurately computing the noise
matrix elements, first numerically in Sec. 4.2.1 for a potential with a slow-roll violating feature,
and then analytically in Sec. 4.2.2 for the case of instantaneous transitions between different
phases during inflation. We reserve the second task to an upcoming paper [77].

4 Noise matrix elements in stochastic inflation

In this section we calculate the expressions for the noise matrix elements ⌃ij , i.e. the correlators
of the field and momentum noise operators ⇠̂i = {⇠̂�, ⇠̂⇡}. We do this initially for standard
slow-roll inflation, and compare the estimates for ⌃ij computed using the pure de Sitter
approximation to those obtained using the slow-roll approximations.

The key equations that we use are the following: the definition of the noise operators,
Eq. (3.13), which along with a step-like k-space window function, Eq. (3.10), leads to the
noise correlators of Eq. (3.14), with the noise correlation matrix ⌃ij being given by Eq. (3.15).

It is important to note that these UV-noise mode functions are to be computed, not
at Hubble crossing, but at k = �aH, where they chronologically become part of the coarse-
grained IR field and momentum, and provide quantum kicks. Hence, in order to compute
the elements of the noise matrix ⌃ij , we need to compute the mode functions �ik

= {�k,⇡k}.
This can be done by solving the Mukhanov-Sasaki (MS) equation in terms of conformal time
⌧ defined in Eq. (2.9) 8
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00
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00
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, (4.3)

with appropriate initial conditions. The expressions for the mode functions �ik
in the spatially

flat gauge9 are given by (see App. A)

�k =
vk

a
, ⇡k =

d

dN

⇣
vk

a

⌘
. (4.4)

From Sec. 3.2, it is clear that in order to accurately compute the noise matrix elements
⌃ij appearing in the adjoint FPE, Eq. (3.19), we need to solve the MS equation as accurately

8
Note that depending upon the situation, the MS equation, Eq. (4.1), written in terms of the number of

e-folds N ⇠ ln(a) as
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vk

dN2
+ (1 � ✏H)
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dN
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aH
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00

z
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vk = 0

might be more useful. We note that in terms of N , the MS equation features a friction term, and both the terms

inside the square bracket evolve with time. However, in terms of conformal time, ⌧ , it is a simple harmonic

oscillator equation with time dependent mass terms (aH)�2
z
00
/z, while the comoving mode frequency k is

fixed, which is why we choose to work with conformal time.
9
In this work we compute the mode functions {�k,⇡k}, and hence the noise matrix elements, ⌃ij , in the

spatially flat gauge, while the Langevin equations are written in the uniform-N gauge. This introduces small

corrections to the noise terms which we assume to be negligible [59]. We discuss this further in Sec. 5.
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and in the spatially flat gauge:



as possible. For slow-roll inflation, all relevant scales were sub-Hubble at early times, and
hence we impose the Bunch-Davies [93] initial conditions

lim
k⌧�!�1

vk(⌧) =
1

p
2k

e
�ik⌧

. (4.5)

We introduce a convenient new time variable, T , defined as

T = �k⌧ =
k

aH
. (4.6)

During quasi-dS expansion, the conformal time ⌧ runs from �1 to 0, so T runs from 1 to
0. Modes undergo Hubble-exit at T ⌘ k/(aH) = 1, and the sub- and super-Hubble regimes
correspond to T � 1 and T ⌧ 1 respectively.

In terms of T the MS equation, Eq. (4.1), takes the form

d2vk
dT 2

+

 
1 �

⌫
2
�

1

4

T 2

!
vk = 0 , (4.7)

where
⌫
2 =

1

(aH)2
z
00

z
+

1

4
. (4.8)

For slow-roll inflation, ⌫2 is greater than or equal to 9/4 at early times and increases mono-
tonically towards the end of inflation. In the limit where ⌫ is a constant, the MS Eq. (4.7)
can be converted to a Bessel equation as shown in App. B. In what follows, we start with
the computation of the noise-matrix elements for the case of featureless slow-roll potentials,
before proceeding to discuss the case of potentials possessing a slow-roll violating feature.

4.1 Featureless potentials

In the case of a featureless potential for which slow roll is a good approximation up until
the end of inflation, the effective mass term (aH)�2

z
00
/z in the MS Eq. (4.1) is almost a

constant and evolves monotonically. Hence the MS Eq. (4.7) can be solved analytically by
approximating ⌫ in Eq. (4.8) to be a constant.

Let us first demonstrate this calculation for the case of the pure de Sitter limit which is
usually employed in the computation of noise matrices in the stochastic formalism. In the pure
dS limit, both ✏H , ⌘H = 0, leading to z

00
/z = 2a2H2 and ⌫

2 = 9/4. Since a(⌧) = �1/(H⌧) in
the pure dS approximation,

a(T ) =
k

HT
, (4.9)

and hence the MS Eq. (4.7) reduces to the familiar form

d2vk
dT 2

+

✓
1 �

2

T 2

◆
vk = 0 . (4.10)

The general solution of this equation is given by

vk(T ) =
1

p
2k


↵k

✓
1 +

i

T

◆
e
i T + �k

✓
1 �

i

T

◆
e
�i T

�
, (4.11)
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Early times, all mode sub horizon -> impose Bunch Davies i.c

Intro new time variable:

as possible. For slow-roll inflation, all relevant scales were sub-Hubble at early times, and
hence we impose the Bunch-Davies [93] initial conditions
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tonically towards the end of inflation. In the limit where ⌫ is a constant, the MS Eq. (4.7)
can be converted to a Bessel equation as shown in App. B. In what follows, we start with
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before proceeding to discuss the case of potentials possessing a slow-roll violating feature.
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In the case of a featureless potential for which slow roll is a good approximation up until
the end of inflation, the effective mass term (aH)�2
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/z in the MS Eq. (4.1) is almost a

constant and evolves monotonically. Hence the MS Eq. (4.7) can be solved analytically by
approximating ⌫ in Eq. (4.8) to be a constant.

Let us first demonstrate this calculation for the case of the pure de Sitter limit which is
usually employed in the computation of noise matrices in the stochastic formalism. In the pure
dS limit, both ✏H , ⌘H = 0, leading to z

00
/z = 2a2H2 and ⌫

2 = 9/4. Since a(⌧) = �1/(H⌧) in
the pure dS approximation,

a(T ) =
k

HT
, (4.9)

and hence the MS Eq. (4.7) reduces to the familiar form

d2vk
dT 2

+

✓
1 �

2

T 2

◆
vk = 0 . (4.10)

The general solution of this equation is given by

vk(T ) =
1

p
2k


↵k

✓
1 +

i

T

◆
e
i T + �k

✓
1 �

i

T

◆
e
�i T

�
, (4.11)
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MS-eqn becomes :

as possible. For slow-roll inflation, all relevant scales were sub-Hubble at early times, and
hence we impose the Bunch-Davies [93] initial conditions

lim
k⌧�!�1

vk(⌧) =
1

p
2k

e
�ik⌧

. (4.5)

We introduce a convenient new time variable, T , defined as

T = �k⌧ =
k

aH
. (4.6)

During quasi-dS expansion, the conformal time ⌧ runs from �1 to 0, so T runs from 1 to
0. Modes undergo Hubble-exit at T ⌘ k/(aH) = 1, and the sub- and super-Hubble regimes
correspond to T � 1 and T ⌧ 1 respectively.

In terms of T the MS equation, Eq. (4.1), takes the form

d2vk
dT 2

+

 
1 �

⌫
2
�

1

4

T 2

!
vk = 0 , (4.7)

where
⌫
2 =

1

(aH)2
z
00

z
+

1

4
. (4.8)

For slow-roll inflation, ⌫2 is greater than or equal to 9/4 at early times and increases mono-
tonically towards the end of inflation. In the limit where ⌫ is a constant, the MS Eq. (4.7)
can be converted to a Bessel equation as shown in App. B. In what follows, we start with
the computation of the noise-matrix elements for the case of featureless slow-roll potentials,
before proceeding to discuss the case of potentials possessing a slow-roll violating feature.

4.1 Featureless potentials

In the case of a featureless potential for which slow roll is a good approximation up until
the end of inflation, the effective mass term (aH)�2

z
00
/z in the MS Eq. (4.1) is almost a

constant and evolves monotonically. Hence the MS Eq. (4.7) can be solved analytically by
approximating ⌫ in Eq. (4.8) to be a constant.

Let us first demonstrate this calculation for the case of the pure de Sitter limit which is
usually employed in the computation of noise matrices in the stochastic formalism. In the pure
dS limit, both ✏H , ⌘H = 0, leading to z

00
/z = 2a2H2 and ⌫

2 = 9/4. Since a(⌧) = �1/(H⌧) in
the pure dS approximation,

a(T ) =
k

HT
, (4.9)

and hence the MS Eq. (4.7) reduces to the familiar form

d2vk
dT 2

+

✓
1 �

2

T 2

◆
vk = 0 . (4.10)

The general solution of this equation is given by

vk(T ) =
1

p
2k


↵k

✓
1 +

i

T

◆
e
i T + �k

✓
1 �

i

T

◆
e
�i T

�
, (4.11)
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For slow-roll inflation, ⌫2 � 9/4 at early times and
increases monotonically towards the end of inflation.

1



Case of Pure dS limit, both ✏H , ⌘H = 0, leading to z
00
/z = 2a2H2 and ⌫

2 = 9/4.

1

Obtain mode solution:

vk(T ) =
1p
2k

✓
1 +

i

T

◆
ei T ,

1

And exact noise matrix elements, (recall evaluated at k = �aH, hence when T = �)

⌃�� = (1 + �
2)

✓
H

2⇡

◆2

Re(⌃�⇡) = ��
2

✓
H

2⇡

◆2

⌃⇡⇡ = �
4

✓
H

2⇡

◆2

For � = 0.01 say have ⌃�� : ⌃�⇡ : ⌃⇡⇡ = 1 : 10�4 : 10�8 - which is why ⌃�⇡ and ⌃⇡⇡ usually ignored.

1



Case of slow roll inflation where ✏H , ⌘H ⌧ 1, the slow-roll parameters but do not exactly vanish.

1

For realistic SR potentials, ⌫ is roughly equal to 3/2 and evolves slowly and monotonically. We obtain

vk(T ) = e
i(⌫+ 1

2 )
⇡
2

r
⇡

2

1p
2k

p
T H

(1)
⌫ (T ) ,

1

scales

⌃�� = 22(⌫�
3
2)


�(⌫)

�(3/2)

�
2

✓
H

2⇡

◆
2

T
2(�⌫+

3
2) , (4.23)

Re (⌃�⇡) = �22(⌫�
3
2)


�(⌫)

�(3/2)

�
2

✓
H

2⇡

◆
2

✓
�⌫ +

3

2

◆
T
2(�⌫+

3
2) , (4.24)

⌃⇡⇡ = 22(⌫�
3
2)


�(⌫)

�(3/2)

�
2

✓
H

2⇡

◆
2

✓
�⌫ +

3

2

◆
2

T
2(�⌫+

3
2) . (4.25)

Recalling the definition of T in Eq. (4.6) and the fact super-Hubble scales correspond to
k = �aH, hence T = �, it follows that the above expressions demonstrate that all three
noise terms scale as ⌃ij / �

2(�⌫+3/2) on super-Hubble scales. This is in contrast to the
pure dS limit where the three noise terms in Eqs. (4.17)-(4.19) behave differently, namely,
⌃�� = const., ⌃�⇡ / �

2 and ⌃⇡⇡ / �
4. Hence, during SR inflation for which ⌫ ' 3/2, even

though the momentum-induced noise terms ⌃�⇡ and ⌃⇡⇡ are small compared to the field
noise ⌃��, they may not be negligible, depending upon the value of (⌫ � 3/2). As mentioned
previously, for most slow-roll potentials, ⌫ evolves slowly and monotonically. The numerically
determined noise matrix elements, ⌃ij , are shown in Fig. 4 for an example asymptotically flat
SR potential, which we choose to be the D-Brane KKLT potential [94–97] which has the form

V (�) = V0

�
2

M2 + �2
, (4.26)

where M is the mass scale in the KKLT model which we have chosen to be M = 0.5mp. We
have chosen � = 0.01 as is the standard practice (see Ref. [82]). We notice that the momentum
induced noise terms ⌃�⇡ and ⌃⇡⇡ are much higher than their corresponding values in the
pure de Sitter limit. In particular, we find the ratio of ⌃�� : |Re(⌃�⇡)| : ⌃⇡⇡ to be about
1 : 10�2 : 10�4 for large Ne as opposed to the de Sitter analytic estimate of 1 : 10�4 : 10�8.
Additionally, the momentum induced noise terms scale approximately in the same way as
the field noise ⌃�� in accordance with Eqs. (4.23)-(4.25) at early times during inflation when
⌫ ' const.. Towards the end of inflation, since ⌫ starts to evolve faster, our aforementioned
analytical results based on ⌫ ' const. are no longer applicable.

4.2 Potentials with a slow-roll violating feature

Potentials possessing a feature that generates large, PBH-forming, perturbations, typically
exhibit slow-roll violation, during which the quasi-dS approximation is still valid (✏H ⌧ 1),
while ⌘H � 1 (see Ref. [79]). In particular, ⌘H ' 3 during an ultra slow-roll phase as discussed
in Sec. 2. From Eq. (4.3), the expression for the effective mass term z

00
/z under the quasi-dS

approximation becomes

1

(aH)2
z
00

z
' 2 � 3 ⌘H + ⌘

2

H + ⌧
d⌘H
d⌧

. (4.27)

In this case, the inflationary dynamics undergoes transitions between a number of phases
driven by the behaviour of ⌘H . In single field models in which perturbations grow sufficiently
to produce an interesting abundance of PBHs, the inflaton typically undergoes two important
transitions (see Ref. [98]). The first transition T-I occurs from the CMB scale SR-I to a near-
USR phase, followed by a second transition T-II, from the near-USR phase to the subsequent
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And on superhorizon scales: Note, the hierarchy of noise 
terms no longer necessarily 
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Figure 4: The numerically determined noise matrix elements for the slow-roll D-brane KKLT
potential given in Eq. (4.26) for M = 0.5mp, in the absence of any features with � = 0.01,
as a function of number of e-foldings from the end of inflation Ne: from top to bottom |⌃��|,
|Re(⌃�⇡)| and |⌃⇡⇡| blue, green and purple lines respectively. We find significant differences
between the numerical calculation and the analytical estimation under the assumption of a
de Sitter expansion, Eqs. (4.17)-(4.19), in which case the ratio of ⌃�� : |Re(⌃�⇡)| : ⌃⇡⇡ is
1 : 10�4 : 10�8.

where H
(1)

⌫ (T ) is the Hankel function of the first kind. For ⌫ 6= 3/2, using the expression for
the super-Hubble limit of the Hankel function11 given in Eq. (B.8), we obtain expressions for
the field and momentum mode functions

�k(T ) = e
i(⌫� 1

2)
⇡

2 2⌫�
3
2

�(⌫)

�(3/2)

H
p

2 k3
T
�⌫+

3
2 , (4.21)

⇡k(T ) = �e
i(⌫� 1

2)
⇡

2 2⌫�
3
2

�(⌫)

�(3/2)

H
p

2 k3

✓
�⌫ +

3

2

◆
T
�⌫+

3
2 , (4.22)

which leads to the following expressions for the noise matrix elements ⌃ij on super-Hubble
11

Expressions for ⌃ij which are valid for any value of ⌫ in the super-Hubble limit T ⌧ 1 are provided in

App. C.
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For D-brane KKLT type potential

V (�) = V0
�2

M2 + �2

we find for large Ne, ⌃�� : |Re(⌃�⇡)| : ⌃⇡⇡ = 1 : 10�2 : 10�4 unlike de Sitter case.

1



Case of potentials with a slow-roll violating feature, like USR with ✏H ⌧ 1, while ⌘H � 1
Dynamics undergoes number of phases driven by ⌘H . We now have :

1

(aH)2
z
00

z
' 2� 3 ⌘H + ⌘

2
H
+ ⌧

d⌘H
d⌧

1

Specific example, a modified KKLT potential with an additional tiny Gaussian bump-like feature [Mishra et
al 2019]:

Vb(�) = V0
�2

M2 + �2


1 +A exp

✓
� 1

2

(�� �0)2

�̃2

◆�
,

where A, �̃ and �0 represent the height, width and position of the bump respectively.

1

second slow-roll phase, SR-II, before the end of inflation. For some class of features (see
Refs. [98, 99]), the second transition T-II also leads to an intermediate constant-roll (CR)
phase [100] during which ⌘H is negative, almost constant, and of order unity.

As a specific example, we consider a modified KKLT potential with an additional tiny
Gaussian bump-like feature [101]:

Vb(�) = V0

�
2

M2 + �2


1 +A exp

✓
�
1

2

(� � �0)2

�̃2

◆�
, (4.28)

where A, �̃ and �0 represent the height, width and position of the bump respectively. The
evolution of ⌘H and z

00
/z for this potential is shown in Fig. 5. We have fixed M = 0.5mp,

and taken the bump parameters to be A = 1.87 ⇥ 10�3, �̃ = 1.993 ⇥ 10�2 and �0 = 2.005mp.
This leads to an amplification of the scalar power-spectrum, P⇣ , by a factor of 107 relative
to its value on CMB scales.
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Figure 5: Evolution of the effective mass term (1/aH)2z00/z in the Mukhanov-Sasaki equation
Eq. (4.1) (solid green curve) and ⌘H (dashed blue curve) for the modified KKLT potential
featuring a tiny Gaussian bump as given in Eq. (4.28). The black-dashed line is (1/aH)2z00/z
for a de Sitter expansion (Eq. 4.8), namely ⌫ = 3/2. In the modified KKLT case, (1/aH)2z00/z
makes a sharp yet smooth dip around the transition from the CMB scale SR-I to the subsequent
near-USR phase, after which it remains almost constant throughout the USR and constant-roll
(CR) phases (but with ⌫ > 3/2), until the inflaton enters into another slow-roll phase, SR-II,
before the end of inflation. The corresponding noise matrix elements associated with this
potential are shown in Fig. 6.

The inflationary dynamics in this case display the aforementioned three key phases,
namely SR-I, USR and CR with ⌘H making sharp (yet smooth) transitions between them, as
shown by the dashed blue curve in Fig. 5. However, during the second transition from USR to
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Fixed M = 0.5mp, and bump parameters to be A = 1.87⇥ 10�3, �̃ = 1.993⇥ 10�2 and �0 = 2.005mp.

1

Gives amplification of the scalar power-spectrum, P⇣ , by a factor of 107 relative to its value on CMB scales.

1
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Figure 6: The numerically determined noise matrix elements, ⌃ij , for the modified KKLT
potential Eq. (4.28), with � = 0.01, leading to a realistic smooth transition from SR-I to
USR. (Note that the plot shows the behaviour of ⌃ij only in the vicinity of the USR regime.)
The transition leads to an enhancement of the momentum induced noise terms, ⌃�⇡ and ⌃⇡⇡,
relative to the field noise, ⌃��, in the USR epoch.

Substituting Eqs. (4.29)-(4.31) into Eq. (3.15), we derive the following compact expres-
sions for the noise matrix elements ⌃ij

⌃�� = (1 � ✏H)
k
3

2⇡2
⇥

1

a2
⇥

⇣
v
(R)

k

⌘
2

+
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v
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⌘
2
� �����

k=�aH

(4.32)

Re (⌃⇡�) = Re (⌃�⇡) = (1 � ✏H)
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� v
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!# �����
k=�aH

(4.33)

⌃⇡⇡ = (1 � ✏H)
k
3

2⇡2
⇥

1

a2
⇥

2

4
 
v
0(R)

k

aH
� v

(R)

k

!2

+

 
v
0(I)
k

aH
� v

(I)

k

!2
3

5
�����
k=�aH

. (4.34)

As we mentioned earlier, the imaginary part of the off-diagonal term ⌃⇡� does not
correspond to a stochastic classical noise source [82], hence we only need consider its real part
in Eq. (4.33). The evolution of the absolute values of ⌃��, Re(⌃�⇡) and ⌃⇡⇡ for the potential
Eq. (4.28) are plotted in Fig. 6 for � = 0.01, while Fig. 7 shows the ratios between the
momentum-induced noise terms and the field noise, |Re(⌃�⇡)|/|⌃��| and |⌃⇡⇡|/|⌃��| around
the transition epoch. The transition leads to an enhancement of the momentum induced
noise terms relative to the field noise with ⌃⇡⇡ > |Re(⌃�⇡)| > ⌃��. This is followed by a
near-exponential fall of each ⌃ij during USR, since the slope of ⌃ij is almost constant during
this epoch. We see that |⌃⇡⇡|/|⌃��| & 3 ⇥ |Re(⌃�⇡)|/|⌃��|. At late times the noise matrix
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Numerical noise matrix elements, ⌃ij - note the switching of dominant terms during USR

1

elements begin to rise again and asymptote to constant values, and the hierarchy between the
noise terms gets reversed back to ⌃⇡⇡ < |Re(⌃�⇡)| < ⌃��. We also notice that asymptotic
value of each ⌃ij at late times is greater than its corresponding value in the SR-I phase.
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Figure 7: The ratios of the momentum-induced noise terms and the field noise,
|Re(⌃�⇡)|/|⌃��| in green and |⌃⇡⇡|/|⌃��| in purple, with � = 0.01, for the potential Eq. (4.28)
with a tiny Gaussian bump as a function of Ne around the SR-I to USR transition. The
transition from SR-I to USR leads to an enhancement of the momentum induced noise terms,
⌃�⇡ and ⌃⇡⇡, relative to the field noise, ⌃��, in the USR epoch.

From Figs. 6 and 7, we conclude that the noise matrix elements for a potential with a
PBH forming feature evolve in a more complicated way than for pure de Sitter or pure slow-roll.
We next show that the various interesting features induced by the transition from SR-I to USR,
that we discussed above, can be understood by making appropriate analytical approximations.
In the following subsection, we compute the noise matrix elements analytically by assuming
the transition T-I from SR-I to USR to be instantaneous.

4.2.2 Analytical treatment for instantaneous transitions

In order to compute ⌃ij analytically, we consider an approach which captures the key fea-
tures of the full numerical evolution, namely solving the MS Eq. (4.7) under the following
assumptions.

1. We assume the second slow-roll parameter ⌘H to be a piece-wise constant function which
makes an instantaneous (yet finite) transition, ⌘H : ⌘1 ! ⌘2 at time ⌧ = ⌧1, given by

⌘H(⌧) = ⌘1 + (⌘2 � ⌘1) ⇥(⌧ � ⌧1) , (4.35)
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Noise ratios in the SR-1 to USR region
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Outstanding steps to calculate the PBH mass fraction

1

for some of the earlier attempts in this direction, while for a more concrete analysis beyond
slow-roll, see Ref. [63], and for state-of-the-art numerical simulations, relevant for determining
the PDF of primordial fluctuations, see Refs. [64, 68, 69, 72].

There is also an analytically concrete way to study this system, using the first-passage
time analysis which involves making a transition from the Langevin equations to an equivalent
second order partial differential Fokker-Planck equation (FPE) [40, 43, 88, 89], that describes
the time evolution of the PDF of the stochastic variables {�,⇧}, subject to appropriate
boundary conditions. Given our primary interest in computing the full PDF P [⇣] for PBH
formation, we take this route following Refs. [54, 57, 67].

The FPE corresponding to the Langevin equation, Eq. (3.11), takes the form

@

@N
P (�i;N) = LFP(�i) . P (�i;N) , (3.16)

where LFP(�i) is the second-order Fokker-Planck differential operator and P (�i;N) is the
probability density function of the stochastic process that is related to the probability of
finding the phase-space variables at a given value �i = {�,⇧} at some time N . However
such a quantity is not of primary concern to us since we are not interested in studying the
phase-space dynamics of the inflaton6. Rather, we are interested in finding the probability
distribution P�i

(N ) of the number of e-folds N . Note the important difference between
our time variable N and the stochastic variable N . N denotes the background expansion
of the Universe, while N is the number of e-folds of expansion obtained from the Langevin
equations with fixed boundary conditions in the IR field space, �en and �ex. The coarse-
grained curvature perturbation ⇣cg is related to the stochastic number of e-folds N via the
stochastic �N formalism [46, 54, 57, 67]

⇣cg ⌘ ⇣(�i) = N � hN (�i)i , (3.17)

with
hN (�i)i =

Z 1

0

N P�i
(N ) dN , (3.18)

where the PDF P�i
(N ) of the number of e-folds satisfies the adjoint FPE which we discuss

below in Sec. 3.2. Note that N (�i) and P�i
(N ) correspond to N (�,⇧) and P(�,⇧)(N )

respectively.

3.2 Adjoint Fokker-Planck equation and first-passage time analysis

The adjoint FPE for the PDF P�i
(N ) corresponding to the general Langevin equation,

Eq. (3.11), is given by

@

@N
P�i

(N ) =


Di

@

@�i

+
1

2
⌃ij

@
2

@�i@�j

�
P�i

(N ) . (3.19)

Our primary goal is to solve Eq. (3.19), with appropriate boundary conditions for �i ⌘

{�,⇧} in order to compute the PDF P�i
(N ) ⌘ P�,⇧(N ). A physically well-motivated set of

boundary conditions includes an absorbing boundary at smaller field values �(A) closer to the
end of inflation and a reflecting boundary at a larger field value �

(R) closer to the CMB scale.
The PDF at the boundaries satisfies

6
This would have been our primary goal if we were studying the initial conditions for inflation, or exit from

eternal inflation to a SR classical regime [90, 91].
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Have calculated the stochastic noise matrix elements ⌃ij , for a sharp transition from SR to USR

1

Aim is to determine the PDF of the number of e-folds, P�,⇧(N ), by solving the adjoint Fokker-Planck eqn

1

Then calculate the mass fraction of PBHs �PBH.

1

Comparing Fig. 8 with Fig. 6, we see that the analytical treatment assuming an instan-
taneous transition between two constant values of ⌫, ⌫1 and ⌫2 (Case 2) captures most of the
asymptotic properties of ⌃ij for a potential with a PBH forming feature. This is in contrast
to the pure dS transition (Case 1) which was not able to capture the late-time asymptotes
accurately, due to the assumption that ⌫1 = ⌫2 = 3/2.

5 Outstanding steps to calculate the PBH mass fraction

In this Section we discuss what remains to be done to accurately calculate the PBH mass
fraction. In Sec. 5.1 we provide expressions for the primordial probability distribution of N ,
P�,⇧(N ), and the PBH mass fraction, �, in terms of quantities which can be calculated using
the Fokker-Plank Eq. and the noise terms that we have calculated. In Sec. 5.2 we discuss
the various complexities in the calculating the PBH mass fraction, in the stochastic inflation
framework and more generally.

5.1 Analytic expressions

In the preceding Sec. we accurately calculated the stochastic noise matrix elements ⌃ij , for
a sharp transition from SR to USR, using both analytical and numerical techniques. Our
ultimate aim is to determine the PDF of the number of e-folds, P�,⇧(N ), by solving the
adjoint Fokker-Planck Eq. (3.19) (using appropriate boundary conditions) and then calculate
the mass fraction of PBHs �PBH. While this will be the primary focus of our upcoming paper
[77], here we outline the key expressions required to compute the mass fraction.

The primordial probability distribution of N , which is the general solution to the adjoint
Fokker-Planck Eq. (3.19), can be written in the form

P�,⇧(N ) =
1X

n=0

Bn(�,⇧) e
�⇤n N

, (5.1)

where the exact form of Bn(�,⇧) has to be determined by imposing appropriate boundary
conditions and using the correct expressions for the noise matrix elements ⌃ij as determined
in Sec. 4. Using the above mathematical form for the primordial PDF, general expressions for
the moments of the number of e-folds, hN

m(�,⇧)i, (see Refs. [46, 62]) and the mass fraction
of PBHs, �(�,⇧), can be derived.

From the stochastic �N formalism, the coarse-grained comoving curvature perturbation
is given by

⇣cg ⌘ ⇣cg(�,⇧) = N � hN (�,⇧)i , (5.2)

where the average number of e-folds, hN (�,⇧)i, can be determined via

hN (�,⇧)i =
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Bn(�,⇧) to be determined from b.c. and expressions for ⌃ij
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The PBH mass fraction can be estimated by integrating the probability distribution of the
coarse grained curvature perturbation, P (⇣cg), above the threshold for PBH formation, ⇣c.
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This can be compared with the Gaussian PDF obtained for typical fluctuations in the pertur-
bative approach, �G(�,⇧)
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with
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k
P⇣(k) .

To calculate the PBH mass fraction using Eq. (5.6) it is necessary to find the coefficients,
Bn(�,⇧), and the exponents, ⇤n, by solving the adjoint Fokker-Planck Eq. (3.19) using
the field and momentum induced noise terms in Sec. 4. While this task is reserved for our
upcoming paper, we expect that the sharp decline of the noise terms after the transition will
decrease the amount of quantum diffusion of the IR fields across the PBH-forming feature.
Therefore we expect the tail of the PDF to decline less rapidly than what is usually found
using the pure dS approximation without any transitions. Indeed such behaviour of the PDF
was found in Ref. [92] which focused on a sharp transition in pure dS space.

5.2 Complexities

In this subsection we overview the outstanding complexities in calculating the PBH mass
fraction.

*** AMG I’m not sure whether we want to keep the bullet points or not.
They have the advantage of delineating separate issues, but having such extensive
text under each one is somewhat unusual

• In the previous sub-section, we outlined how the PBH mass fraction can be calculated
using the PDF of the curvature perturbation obtained from the stochastic inflation
framework. The criterion for PBH formation is most accurately formulated in terms of
the non-linear density contrast �l, however, see e.g. Ref. [38, 39, 70]. Therefore for a
high-precision calculation the PDF of the density contrast is required.
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Compare with Gaussian PDF for typical fluctuations
in the perturbative approach, �G(�,⇧)

1

Of course this might not be possible !



Conclusions 

PBHs are black holes that could have formed In the early universe


They could in principle have any mass and therefore could be dark matter candidates without the need of new particles.


PBHs can form due to the gravitational collapse of large fluctuations - require modification from standard slow roll inflation


An accurate calculation of the full PDF of the perturbations is required to calculate their abundance.


Stochastic inflation is a powerful framework for computing the cosmological correlators non-perturbatively.


However to correctly account for the back-reaction effect of small scale (UV) fluctuations, on the long wavelength coarse-grained (IR) 
field, it is essential to compute the noise matrix elements accurately.


Since most single field inflationary potentials with a PBH-forming feature  violate the slow-roll conditions, a precise calculation of the 
stochastic noise matrix elements beyond slow roll is required.


Have seen some rich structure in the noise terms and shown how poor the de Sitter type solution can be in determining the noise 
across the SRi-USR regimes.


We saw a sharp decline of the noise terms after the transition and expect this will decrease the amount of quantum diffusion of the IR 
fields across the PBH-forming feature. 


Therefore we expect the tail of the  PDF to decline less rapidly than what is usually found using the pure dS approximation without 
any transitions [see also Ahmadi et al 2022].




Conclusions cont… 

Have not discussed many elements of PBH physics:


Role in Information paradox [Hawking 1971,1974]

Role as a catalysis of Ewk phase transition [Gregory et al 2014]


Possible role of PBH Planck mass relics in dark matter constraints [Zeldovich 1984, MacGibbon 1987]

Alternative formation mechanisms such as collapsing cosmic string loops 


or from bubble collisions. [Hawking Moss & Stewart 1982] 

Baryogenesis scenarios from PBH evaporations [Zeldovich & Starobinski 1976]


PBHs decay by evaporation - interesting attractor solution where PBHs in equilibrium with radiation in both radiation dominated and 
matter dominated universe - might lead to interesting new features. [Barrow et al 1992]


For objects that as far as we know have never been detetced, PBHs offer staggering constraints on cosmological models.




When discussing inflation model building and particle cosmology - Subir 
often had a pretty impressive colleague and friend to challenge assumptions  

I learnt a great deal from both of them  



Thank you Subir for your collegiality and friendship over quite a few years now. 

No one has done more to try and keep us honest as we get over excited when interpreting the latest cosmological 
observations.  

Me included !
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Why might a non-gaussian PDF of Primordial Fluctuations help with creating PBHs ?   
PBH Formation from Rare Peaks

Swagat Saurav Mishra, CAPT, Nottingham PBHs and Tail of PDF

We expect PBHs to form from rare peaks 

in the fluctuations in the density contrast 

PDF of Primordial Fluctuations P [⇣] = | [⇣]|2

Swagat Saurav Mishra, CAPT, Nottingham PBHs and Tail of PDF

For small fluctuations 
we expect the PDF to 

be Gaussian 

Non-Gaussian Tail of Primordial Fluctuations

Swagat Saurav Mishra, CAPT, Nottingham PBHs and Tail of PDF

But deviations from 
Gaussian for large 
fluctuations could 
increase the PDF 

enhancing the 
likelihood of forming 

PBHs

Credit: Swagat Mishra



What we know from Observations

Possibility of enhancement of small scale fluctuations!

Swagat Saurav Mishra, CAPT, Nottingham PBHs and Tail of PDF

Required amplification for interesting PBH scenarios 

Credit: Swagat Mishra



Typical Power-spectrum
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In terms of a power spectrum generated from inflation we require 



The Mechanism: PBH seeds from Inflation
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PBH size fluctuations re-enter on different scales 



Analytic treatment of instantaneous transition - works really nicely

1

elements begin to rise again and asymptote to constant values, and the hierarchy between the
noise terms gets reversed back to ⌃⇡⇡ < |Re(⌃�⇡)| < ⌃��. We also notice that asymptotic
value of each ⌃ij at late times is greater than its corresponding value in the SR-I phase.

Figure 7: The ratios of the momentum-induced noise terms and the field noise,
|Re(⌃�⇡)|/|⌃��| in green and |⌃⇡⇡|/|⌃��| in purple, with � = 0.01, for the potential Eq. (4.28)
with a tiny Gaussian bump as a function of Ne around the SR-I to USR transition. The
transition from SR-I to USR leads to an enhancement of the momentum induced noise terms,
⌃�⇡ and ⌃⇡⇡, relative to the field noise, ⌃��, in the USR epoch.

From Figs. 6 and 7, we conclude that the noise matrix elements for a potential with a
PBH forming feature evolve in a more complicated way than for pure de Sitter or pure slow-roll.
We next show that the various interesting features induced by the transition from SR-I to USR,
that we discussed above, can be understood by making appropriate analytical approximations.
In the following subsection, we compute the noise matrix elements analytically by assuming
the transition T-I from SR-I to USR to be instantaneous.

4.2.2 Analytical treatment for instantaneous transitions

In order to compute ⌃ij analytically, we consider an approach which captures the key fea-
tures of the full numerical evolution, namely solving the MS Eq. (4.7) under the following
assumptions.

1. We assume the second slow-roll parameter ⌘H to be a piece-wise constant function which
makes an instantaneous (yet finite) transition, ⌘H : ⌘1 ! ⌘2 at time ⌧ = ⌧1, given by

⌘H(⌧) = ⌘1 + (⌘2 � ⌘1) ⇥(⌧ � ⌧1) , (4.35)
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Assume piecewise constant ηH - makes instantaneous (yet finite) transition η1->η2 at time 𝜏 = 𝜏1  

where ⇥ is the Heaviside step function:

⇥(⌧ � ⌧1) =

(
0 , ⌧ < ⌧1 ,

1 , ⌧ > ⌧1 .
(4.36)

2. The corresponding expression for ⌫ given in Eq. (4.8) is then determined using Eq. (4.3),
which under the quasi-dS approximation, ✏H ' 0, becomes Eq. (4.27). Using the
expression for ⌘H from Eq. (4.35) in Eq. (4.27), we obtain
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where
A = ⌘2 � ⌘1 , ⌫

2

1,2 �
1

4
= 2 � 3 ⌘1,2 + ⌘

2

1,2 . (4.38)

Hence the piece-wise constant ⌘H in Eq. (4.35) results in a piece-wise constant ⌫ in
Eq. (4.37). We notice that the effective mass term z

00
/z contains a Dirac delta-function

arising from the derivative of the ⇥ function in Eq. (4.35). Note that for ⌘2 > ⌘1 (which
is the case for the SR-I ! USR transition in Fig. 5) we have A > 0 and hence the
term containing the Dirac delta-function in Eq. (4.37) is negative (since ⌧ < 0 during
inflation). This delta-function dip for an instantaneous transition analytically represents
the observed dip of finite width and depth for potentials with a smooth feature, as seen
in (1/aH)2z00/z in Fig. 5 (around Ne ⇠ 32.5).

3. We impose Bunch-Davies initial conditions, Eq. (4.5), only for modes that become
super-Hubble at early times before the transition i.e. ⌧ < ⌧1.

4. General solutions to the MS equation in different piece-wise constant ⌫ regimes are
matched during the transition ⌧ = ⌧1 by using the Israel Junction conditions [92, 103,
104]
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(⌧) are the mode functions before and after the transition respectively,
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(4.41)

We would ultimately like to derive expressions for the noise matrix elements which can
be expressed in terms of the mode functions vk in the following compact form
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Note the delta function - 

gives the rapid dip 

where ⇥ is the Heaviside step function:

⇥(⌧ � ⌧1) =

(
0 , ⌧ < ⌧1 ,

1 , ⌧ > ⌧1 .
(4.36)

2. The corresponding expression for ⌫ given in Eq. (4.8) is then determined using Eq. (4.3),
which under the quasi-dS approximation, ✏H ' 0, becomes Eq. (4.27). Using the
expression for ⌘H from Eq. (4.35) in Eq. (4.27), we obtain

⌫
2
�

1

4
⌘

z
00

z
⌧
2 = A ⌧ �D(⌧ � ⌧1) + ⌫

2

1 �
1

4
+

�
⌫
2

2 � ⌫
2

1

�
⇥(⌧ � ⌧1) , (4.37)

where
A = ⌘2 � ⌘1 , ⌫

2

1,2 �
1

4
= 2 � 3 ⌘1,2 + ⌘

2

1,2 . (4.38)

Hence the piece-wise constant ⌘H in Eq. (4.35) results in a piece-wise constant ⌫ in
Eq. (4.37). We notice that the effective mass term z

00
/z contains a Dirac delta-function

arising from the derivative of the ⇥ function in Eq. (4.35). Note that for ⌘2 > ⌘1 (which
is the case for the SR-I ! USR transition in Fig. 5) we have A > 0 and hence the
term containing the Dirac delta-function in Eq. (4.37) is negative (since ⌧ < 0 during
inflation). This delta-function dip for an instantaneous transition analytically represents
the observed dip of finite width and depth for potentials with a smooth feature, as seen
in (1/aH)2z00/z in Fig. 5 (around Ne ⇠ 32.5).

3. We impose Bunch-Davies initial conditions, Eq. (4.5), only for modes that become
super-Hubble at early times before the transition i.e. ⌧ < ⌧1.

4. General solutions to the MS equation in different piece-wise constant ⌫ regimes are
matched during the transition ⌧ = ⌧1 by using the Israel Junction conditions [92, 103,
104]

v
L

k
(⌧1) = v

E

k
(⌧1) (Continuity) , (4.39)

d

d⌧
v
L

k

����
⌧
+
1

�
d

d⌧
v
E

k

����
⌧
�
1

=

Z
⌧
+
1

⌧
�
1

d⌧
z
00

z
v
L

k
(⌧) (Di↵erentiability) , (4.40)

where vE
k
(⌧) and v

L

k
(⌧) are the mode functions before and after the transition respectively,

represented by

vk(⌧) =

(
v
E

k
(⌧) , ⌧ < ⌧1 ,

v
L

k
(⌧) , ⌧ > ⌧1 .

(4.41)

We would ultimately like to derive expressions for the noise matrix elements which can
be expressed in terms of the mode functions vk in the following compact form

⌃�� =

✓
H

2⇡

◆
2

T
2

���
p

2k vk(T )
���
2
����
T =�

, (4.42)

Re (⌃⇡�) = �

✓
H

2⇡

◆
2

T
2Re

✓
p

2kv⇤
k
(T )


T

d

dT

⇣p

2kvk(T )
⌘
+

p

2kvk(T )

�◆ ����
T =�

,(4.43)

⌃⇡⇡ =

✓
H

2⇡

◆
2

T
2

���T
d

dT

⇣p

2k vk(T )
⌘
+

p

2k vk(T )
���
2
����
T =�

, (4.44)

– 24 –

Nosie matrix elements

Ansatz - motivated by numerical results
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Figure 8: The noise matrix elements ⌃ij computed analytically using Eqs. (4.42)-(4.44),
for � = 0.01. Left panel: an instantaneous transition from SR to USR using the pure de
Sitter limit, ⌫1 = ⌫2 = 3/2. Right panel: an instantaneous transition from a SR phase with
⌫1 = 1.52 to a near-USR phase with ⌫2 = 1.8. In both cases the thin dashed lines show the
analytical asymptotes immediately after the transition, ⌃ij ⇠ e

2ANe .

By implementing the Israel junction conditions, Eqs. (4.39) and (4.40), the constant
coefficients of integration C

L

1
and C

L

2
can be shown to satisfy the algebraic equations

a1C
L

1 + b1C
L

2 = d1 (4.63)
a2C

L

1 + b2C
L

2 = d2 , (4.64)

which yields

C
L

1 =
d1 b2 � d2 b1

a1 b2 � a2 b1
, C

L

2 =
d2 a1 � d1 a2

a1 b2 � a2 b1
, (4.65)
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Figure 6: The numerically determined noise matrix elements, ⌃ij , for the modified KKLT
potential Eq. (4.28), with � = 0.01, leading to a realistic smooth transition from SR-I to
USR. (Note that the plot shows the behaviour of ⌃ij only in the vicinity of the USR regime.)
The transition leads to an enhancement of the momentum induced noise terms, ⌃�⇡ and ⌃⇡⇡,
relative to the field noise, ⌃��, in the USR epoch.

Substituting Eqs. (4.29)-(4.31) into Eq. (3.15), we derive the following compact expres-
sions for the noise matrix elements ⌃ij
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As we mentioned earlier, the imaginary part of the off-diagonal term ⌃⇡� does not
correspond to a stochastic classical noise source [82], hence we only need consider its real part
in Eq. (4.33). The evolution of the absolute values of ⌃��, Re(⌃�⇡) and ⌃⇡⇡ for the potential
Eq. (4.28) are plotted in Fig. 6 for � = 0.01, while Fig. 7 shows the ratios between the
momentum-induced noise terms and the field noise, |Re(⌃�⇡)|/|⌃��| and |⌃⇡⇡|/|⌃��| around
the transition epoch. The transition leads to an enhancement of the momentum induced
noise terms relative to the field noise with ⌃⇡⇡ > |Re(⌃�⇡)| > ⌃��. This is followed by a
near-exponential fall of each ⌃ij during USR, since the slope of ⌃ij is almost constant during
this epoch. We see that |⌃⇡⇡|/|⌃��| & 3 ⇥ |Re(⌃�⇡)|/|⌃��|. At late times the noise matrix
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Full numerical solution

Features of analytic solution
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The resulting noise matrix elements, computed using Eqs. (4.42)-(4.44), are shown in
the right panel of Fig. 8. In order to compare our results with the numerical calculation in
Fig. 6, we choose ⌫1 = 1.52 and ⌫2 = 1.8. These values correspond to ⌘1 = �0.02 and ⌘2 = 3.3
respectively, to match the values of ⌘H during the SR-I and the near-USR epochs for the
modified KKLT potential with a Gaussian bump used for the numerical calculation in Fig. 6.

[AMG: I think we need to make it clearer which bits of this match the pure dS case and
which don’t.]

As in the pure dS case, immediately after the transition, when T . T1, the noise matrix
elements fall nearly-exponentially with ⌃ij ⇠ e

2ANe . The ratio ⌃�� : |Re(⌃�⇡)| : ⌃⇡⇡ is
approximately 1 : A : A

2 (where A ⌘ ⌘2 � ⌘1 = 3.32 from Eq. (4.38)), and nearly constant.
However, following this epoch the noise terms begin to rise and the hierarchy between the field
and momentum induced terms is reversed back to ⌃�� > |Re(⌃�⇡)| > ⌃⇡⇡. At sufficiently
late times, T ⌧ T1, the coefficient of the negative frequency solution C

L

2
becomes negligible,

and the behaviour of ⌃ij can be understood from the constant ⌫ expressions for the noise
terms, Eqs. (4.23)-(4.25). At late times, ⌃�� : |Re(⌃�⇡)| : ⌃⇡⇡ ! 1 :
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i.e. the values of ⌃ij are higher than their pre-transition counterparts in the SR-I phase. This
matches the behaviour of the numerically calculated noise matrix elements for the modified
KKLT potential with a Gaussian bump shown in Fig. 6.

The key results of our analytical calculations for an instantaneous transition are:

1. The expressions for the noise matrix elements in the pre-transition epoch are given by
Eqs. (4.23)-(4.25) with ⌫ = ⌫1, resulting in the ratios
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The resulting noise matrix elements, computed using Eqs. (4.42)-(4.44), are shown in
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Fig. 6, we choose ⌫1 = 1.52 and ⌫2 = 1.8. These values correspond to ⌘1 = �0.02 and ⌘2 = 3.3
respectively, to match the values of ⌘H during the SR-I and the near-USR epochs for the
modified KKLT potential with a Gaussian bump used for the numerical calculation in Fig. 6.
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i.e. the values of ⌃ij are higher than their pre-transition counterparts in the SR-I phase. This
matches the behaviour of the numerically calculated noise matrix elements for the modified
KKLT potential with a Gaussian bump shown in Fig. 6.

The key results of our analytical calculations for an instantaneous transition are:
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The resulting noise matrix elements, computed using Eqs. (4.42)-(4.44), are shown in
the right panel of Fig. 8. In order to compare our results with the numerical calculation in
Fig. 6, we choose ⌫1 = 1.52 and ⌫2 = 1.8. These values correspond to ⌘1 = �0.02 and ⌘2 = 3.3
respectively, to match the values of ⌘H during the SR-I and the near-USR epochs for the
modified KKLT potential with a Gaussian bump used for the numerical calculation in Fig. 6.
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