Subir-fest: Oxford 11 – 13 September 2023

Subir, High Energy Neutrinos and the Pierre Auger Observatory

– friend and fellow neutrino hunter

Alan Watson University of Leeds, UK

a.a.watson@leeds.ac.uk

International School of Cosmic Ray Astrophysics, Erice 1978

Fred Reines

Dave Schramm

Peter Fowler

John Linsley

John Simpson

.

ELSEVIER

Astroparticle Physics 23 (2005) 11-17

www.elsevier.com/locate/astropart

The impact of heavy nuclei on the cosmogenic neutrino flux

Dan Hooper^a, Andrew Taylor^a, Subir Sarkar^{b,*}

^a Astrophysics, University of Oxford, Oxford OX1 3RH, UK
 ^b Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK

Received 2 August 2004; received in revised form 21 October 2004; accepted 3 November 2004 Available online 8 December 2004 Web of Science 85 citations Inspire 125

ELSEVIER

Astroparticle Physics 23 (2005) 19-29

www.elsevier.com/locate/astropart

Cosmogenic neutrinos from ultra-high energy nuclei

M. Ave ^{a,d}, N. Busca ^{a,c}, A.V. Olinto ^{a,b,d,*}, A.A. Watson ^e, T. Yamamoto ^{a,d}

^a Kavli Institute of Cosmological Physics, The University of Chicago, 5640 S. Ellis, Chicago, IL 60637, USA
 ^b Department of Astronomy and Astrophysics, The University of Chicago, 5640 S. Ellis, Chicago, IL 60637, USA
 ^c Department of Physics, The University of Chicago, 5640 S. Ellis, Chicago, IL 60637, USA
 ^d Enrico Fermi Institute, The University of Chicago, 5640 S. Ellis, Chicago, IL 60637, USA
 ^e Department of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

Received 14 September 2004; received in revised form 6 November 2004; accepted 8 November 2004 Available online 7 December 2004 Web of Science 99 citations Inspire 142

(1966)

From Hooper, Taylor and Sarkar 2005

Member of Auger Collaboration 2006 – 2012, with main interest in the search for neutrinos

Paper started on Auger Shift: PRD 74 043008 2006

Probing low-x QCD with cosmic neutrinos at the Pierre Auger Observatory

Luis A. Anchordoqui,^{1,2} Amanda M. Cooper-Sarkar,³ Dan Hooper,⁴ and Subir Sarkar⁵

¹Department of Physics, Northeastern University, Boston, MA 02115, USA ²Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA ³Particle Physics, Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford, OX1 3RH, UK ⁴Particle Astrophysics Center, Fermilab, P.O. Box 500, Batavia, IL 60510, USA ⁵Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, UK (Dated: June 4, 2018)

The sources of the observed ultra-high energy cosmic rays must also generate ultra-high energy neutrinos. Deep inelastic scattering of these neutrinos with nucleons on Earth probe center-of-mass energies $\sqrt{s} \sim 100$ TeV, well beyond those attainable at terrestrial colliders. By comparing the rates for two classes of observable events, any departure from the benchmark (unscreened perturbative QCD) neutrino-nucleon cross-section can be constrained. Using the projected sensitivity of the Pierre Auger Observatory to quasi-horizontal showers and Earth-skimming tau neutrinos, we show that a 'Super-Auger' detector can thus provide an unique probe of strong interaction dynamics.

'Super-Auger' x8 present size!

LAA is partially supported by NSF Grant No. PHY-0457004. DH is supported by the DOE and by NASA Grant NAG5-10842. SS acknowledges a PPARC Senior Research Fellowship (PPA/C506205/1). We wish to thank Jim Cronin and Alan Watson for discussions and encouragement.

The Pierre Auger Observatory: Malargüe, Argentina

• 3000 km²: area of West Yorkshire

- •1400 m (875 g cm⁻²)
- 1600 water-Cherenkov detectors: 10 m² x 1.2 m
- Fluorescence detectors at 4 locations

Principles of neutrino detection

Time (ns)

Neutrino limits: as at ICRC 2023

Recent results from Pierre Auger Observatory

– or what Subir missed by joining IceCube

- Energy Spectrum
- Mass Composition
- Distribution of arrival directions Anisotropy

Hybrid Detection of Air Showers

Hybrid detection of showers is a key feature of the Observatory

1. Measurement of the Energy Spectrum

- Determine size of each shower: S₃₈(1000), signal at 1000 m adjusted to 38°
- Account for 'Invisible Energy' (neutrinos and muons dying out in earth)
- Calibrate the energy of S₃₈ using hybrid events in which there is also a measurement of the longitudinal development from the fluorescence detector

- Energy Spectrum is measured, independent of assumptions about hadronic interactions
- Limited by systematic uncertainties up to about 30 EeV
 - Exposure above 3 EeV: 60 x 10³ km² sr yr 760 x 10³ events

~1/3 above 3 EeV

Figure 1 – Energy spectrum of UHECRs, scaled by $E^{2.6}$.

2. Estimate of mass composition is obtained from measurement of X_{max}

log (Energy)

Reconstructed longitudinal profiles

rms uncertainty in $X_{max} < 20$ g cm⁻² from stereo measurements

Figure 2 – Measurements of $\langle X_{\text{max}} \rangle$ (left) and $\sigma(X_{\text{max}})$ (right) compared to the predictions for proton and iron nuclei of the hadronic models EPOS-LHC, Sibyll 2.3c and QGSJetII-04.

An unexpected result:

dogma – going back to the 1950s - was that protons dominated at high energies

Orwellian-like 'group think'

Mass Composition as function of energy

He and Nitrogen dominant above 10 EeV

Little evidence so far of protons or iron nuclei

- but highest energy ~50 EeV

More detailed mass estimates will come with upgrade, AugerPrime

Data as yet insufficient to give definitive explanation **But:** 'proton domination' excluded 1. $E_{1/2} = 53$ EeV predicted, $(22 \pm 1 \pm 3)$ EeV observed 2. In ankle region, (3 - 5) EeV, protons not dominant Data can be explained with stationary and uniform sources with E_{max} ~ Z Using data on X_{max} and the spectrum, one can make a fit

But surely not unique – and anisotropy information still to be added

Figure 4 – Energy density obtained with the best fit parameters of the benchmark scenario described in PRL 125 12106 2020

3. Distribution of Arrival Directions

- 1. Large scale Anisotropies
- 2. Small scale anisotropies at higher energies

Figure 4: Flux above 8 EeV, smoothed by a top-hat window of 45°, in equatorial coordinates (left panel). The position of the Galactic Center is shown with a star and the Galactic Plane is indicated with a dashed line. Distribution in R.A. of the normalized rates of events with $E \ge 8$ EeV (right panel). The black line

After allowing for galactic magnetic field, reasonable agreement with dipole in distribution of 2MRS infra red galaxies

6.9 sigma

 $123 \times 10^3 \text{ km}^2 \text{ sr yr}$

from

Position of excess does not change much with energy: mass must change?

Change in phase of anisotropy supports idea that cosmic rays > 8 EeV are dominantly extragalactic

Higher energies, E> 32 EeV: ApJ 935 170 2022

Figure 1: Local Li-Ma significance map within a top-hat window of 27° radius (left panel) and flux map (right panel) with $E \ge 38$ EeV in Galactic coordinates. The supergalactic plane is shown with a gray line.

Centaurus region (~4 sigma effect) contains Cen A: powerful AGN NGC 4945: AGN and Seyfert Galaxy M83: Starburst galaxy

As reported at ICRC 2023:

For small scale anisotropy:

- ~20% of events appear to be associated with SBG and AGNs
- Strong hint of anisotropy associated with Cen A region

Catalog	$E_{\rm th}$ [EeV]	Ψ[°]	α [%]	TS	Post-trial p-value
All galaxies (IR)	38	24^{+15}_{-8}	14^{+8}_{-6}	18.5	6.3×10^{-4}
Starbursts (radio)	38	25^{+13}_{-7}	9 ⁺⁷	23.4	(6.6×10^{-5})
All AGNs (X-rays)	38	25^{+12}_{-7}	7+4	20.5	2.5×10^{-4}
Jetted AGNs (γ -rays)	38	23^{+8}_{-7}	6^{+3}_{-3}	19.2	4.6×10^{-4}

Table 3: Most significant results of the catalog-based searches. We show the threshold energy, E_{th} , the equivalent top-hat radius, Ψ , the signal fraction, α , the local test statistic, TS, and the post-trial *p*-value.

But can SGBs accelerate particles to beyond 10 EeV?

Anchordoqui – YES but others (Blandford, Bell, ...) less sure Cen A may have the right credentials

An intriguing suggestion for role of Cen A in explaining the data

Bell, Matthews and Taylor – the Echo Model

Cen A is the dominant local accelerator with signals apparently from SGBs in fact reflections. Several of the systems in the 'Council of Giants' are SGBs – talk by Andrew Taylor

Major upgrade to improve measurements of mass initiating events on an eventby event basis

Anisotropy as function of mass?

New electronics (UUB) and Scintillators(SSD) F.Convenga PoS 392, R.Sato PoS 373

Underground Muon Detector (UMD) J.De Jesus PoS 267 **Other science at the Auger Observatory**

- Particle physics: p-p cross-section at $\sqrt{s} = 57$ TeV anomalous muon content
- Photon limits
- Atmospheric Science: Thunderstorms Elves
- Space Weather: e.g. Forbusch decreases
- Beyond Standard Model: e.g: upward-going events (ANITA-like) not seen

A rich harvest that I hope Subir might help us to explain

Back up Slides

Events above 100 EeV

Ref: T. Fujii, Cosmic Ray Indirect Rapporteur at ICRC 2023

search for overdensities in the UHECR flux measured at the Pierre Auger Observatory

Centaurus region contains Cen A: powerful AGN NGC 4945: AGN and Seyfert Galaxy M83: Starburst galaxy

SPECTRUM FEATURES

- Strong suppression at ~ 5 10¹⁹ eV
- New feature "instep" at ~ 10¹⁹ eV
- Ankle at ~ 5 10¹⁸ eV
- 2nd knee at ~ 2 10¹⁷ eV
- Hint for low energy ankle at ~ 10¹⁷ eV

<u>Phys. Rev. Lett. 125 (2020) 121106</u> <u>Phys. Rev. D102 (2020) 062005</u> <u>PoS(ICRC 2021) 324</u>

Measurement of Energy Spectrum is entirely *DATA DRIVEN*

$$Q_{\rm inj}(E_{\rm inj}, A_{\rm inj}) = Q_0 a_A \left(\frac{E_{\rm inj}}{10^{18} \, {\rm eV}}\right)^{-\gamma} \cdot \begin{cases} 1, & Z_A R_{\rm cut} > E_{\rm inj}; \\ \exp\left(1 - \frac{E_{\rm inj}}{Z_A R_{\rm cut}}\right), & Z_A R_{\rm cut} \le E_{\rm inj}; \end{cases}$$

Submitted to JCAP: arXiv 2305.16693