

SubirFest2023, University of Oxford, 11-13 Sept. 2023

Light hidden BSM physics for the $(g-2)_{\mu}$ puzzle

to Subir, the tireless and unorthodox hunter for New Physics Beyond the Standard Models Antonio Masiero Univ. of Padova and INFN, Padova

Based on works on the muon g-2 problem in collaboration with Luca Di Luzio, Bill Marciano, Paride Paradisi and Massimo Passera

On the "old" muon g-2 puzzle

During the long sequel of restless attempts of finding experimental evidences or at least hints of **NEW PHYSICS** beyond the SM along the **traditional High-Energy (HE) and High-Intensity** (HI) paths, several 3 or even 4 σ signals at variance w.r.t. the SM expectations have shown up, but they have also (rather sooner than later) invariably faded away.

A remarkable exception is represented by

the anomalous magnetic moment of the muon

which has been for **several years now** and **still** represents a **major observational** evidence along the HI frontier of the possible presence of NEW PHYSICS

$$\vec{\mu}_{\ell} = \frac{e}{2m} \vec{\ell} \qquad \qquad \vec{\mu}_s = g \, \frac{e}{2m} \, \vec{s}$$

Put a beam of polarized muons into a storage ring

Both the muon spin and momentum precess

Because g is slightly greater than 2 the spin precesses faster than the momentum

a = (g-2)/2

 a_{μ}

 $\frac{eB}{mc}$

FNAL E989 exp. New Result Aug 10, 2023: arXiv:2308.06230 [hep-ex]

Summary

- New result consistent with previous results
- Analyzing Runs 4+5+6
- Can still improve some systematics
- Should meet or exceed 140 ppb goal
- Final result mid-2025
- Looking forward to J-PARC g-2
- Await new theory estimate ...

D. Kawall (g-2 Muon Collaboration), Sixth Plenary Workshop of the Muon g-2 Theory Initiative, Bern, Sept. 2023 • Kusch and Foley 1948:

$$\left(\frac{g_e}{2}\right)^{\exp} \equiv 1 + a_e^{\exp} = 1.00119 \pm 0.00005$$

Schwinger 1948 (triumph of QED!):

$$\left(\frac{g_e}{2}\right)^{\mathrm{th}} \equiv 1 + a_e^{\mathrm{th}} = 1.00116\dots$$

HVP: the major source of uncertainty in the muon g-2 SM computation

WP20 = White Paper of the Muon g-2 Theory Initiative: arXiv:2006.04822

$$\begin{aligned} a_{\mu}^{\text{EXP}} &= 116592061(41) \times 10^{-11} \text{ [BNL + FNAL]} \\ a_{\mu}^{\text{SM}} &= 116591810(43) \times 10^{-11} \text{ [WP20]} \end{aligned} \quad \begin{array}{l} \text{With only} \\ \text{RUN1 data} \end{aligned}$$

$$\Delta a_{\mu} &= a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = 251 (59) \times 10^{-11} \qquad (4.2\sigma \text{ discrepancy!}) \\ \underbrace{(0.1)_{\text{QED}}, \quad (1)_{\text{EW}}, \quad (18)_{\text{HLbL}}, \quad (40)_{\text{HVP}}, \quad \underbrace{(41)_{\delta a_{\mu}^{\text{EXP}}}}_{\text{Now}} \underbrace{(41)_{\delta a_{\mu}^{\text{EXP}}}}_{\text{22}} \end{aligned}$$

- Hadronic uncertainties (HLbL & HVP) are very hard to improve.
- ► $\delta a_{\mu}^{\text{EXP}} \approx 16 \times 10^{-11}$ by the E989 Muon g-2 exp. in a few years.

Muon g-2: FNAL confirms BNL

 a_{μ}^{EXP} = (116592089 ± 63) x 10⁻¹¹ [0.54ppm] BNL E821 a_{μ}^{EXP} = (116592040 ± 54) x 10⁻¹¹ [0.46ppm] FNAL E989 Run 1 a_{μ}^{EXP} = (116592061 ± 41) x 10⁻¹¹ [0.35ppm] WA

- FNAL aims at 16 x 10⁻¹¹. First 4 runs completed, 5th in progress.
- Muon g-2 proposal at J-PARC: Phase-1 with ~ BNL precision.

NEW PHYSICS for the muon g-2: at which scale?

$$\Delta a_\mu \equiv a_\mu^{ ext{NP}} pprox (a_\mu^{ ext{SM}})_{weak} pprox rac{m_\mu^2}{16\pi^2 v^2} pprox 2 imes 10^{-9}$$

A weakly interacting NP at $\Lambda \approx v$ can naturally explain $\Delta a_{\mu} \approx 2 \times 10^{-9}$

 \land $\Lambda \approx v$ favoured by the *hierarchy problem* and by a WIMP DM candidate.

On the other hand, HE experiments (LEP, Tevatron, LHC) have NOT provided any clue for the presence of new (charged) particles at the ELW. scale

- ▶ NP is very light ($\Lambda \lesssim 1$ GeV) and feebly coupled to SM particles.
- NP is very heavy ($\Lambda \gg v$) and strongly coupled to SM particles.

P. Paradisi, La Thuile 2021

The case of AXION-LIKE PARTICLES (ALPs)

Figure: Δa_{μ} regions favoured at 68% (red), 95% (orange) and 99% (yellow) CL. Gray regions are excluded by the BaBar search $e^+e^- \rightarrow \mu^+\mu^- + \mu^+\mu^-$ [Bauer, Neubert, Thamm, '17]

$$\mathcal{L} = \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} + i y_{a\psi} a \bar{\psi} \gamma_5 \psi$$

$$g_{a\gamma\gamma} \equiv \frac{2\sqrt{2}\,\alpha}{\Lambda} \,c_{a\gamma\gamma}$$

Pseudoscalar 1σ solution bands to the g-2 muon anomaly taking $\Lambda = 1$ TeV

Marciano, A.M., Paradisi, Passera '16

ALPs contributions to the muon g-2?

- Both scalar and pseudoscalar ALPs can solve ∆a_µ for masses ~ [100MeV-1GeV] and couplings allowed by current experimental constraints.
- Solution State in the second sec

BMWc20: S. Borsanyi et al. 2002.12347, published on Nature, April 7, 2021 first published lattice result with sub-percent precision!

New result on R(s) from CMD3 (VEPP – 2000 Novosibirsk) 0.6 < √s < 0.88 GeV a, ππ ,LO , 10-10 before CMD2 368.8 ± 10.3 CMD2 366.5 ± 3.4 SND 364.7 ± 4.9 KLOE 360.6 ± 2.1 BABAR 370.1 ± 2.7 BES 361.8 ± 3.6 CLEO 370.0 ± 6.2 SND2k 366.7 ± 3.2 CMD3 379.3 ± 3.0

James Mott: https://indico.fnal.gov/event/60738/ Alex Keshavarzi: https://indico.fnal.gov/event/57249/contributions/271581/

LO-HVP from Lattice QCD

G.Gagliardi, Workshop of the Muon g-2 Theory Initiative, Edinburgh, Sept. 2022

Colangelo, El-Khadra, Hoferichter, Keshavarzi, Lehner, Stoffer, Teubner, arXiv:2205.12963v2 (2022)

Figure 1: Short-distance, intermediate, and long-distance weight functions in Euclidean time (left), and their correspondence in center-of-mass energy (right).

The experimental ($R^{\exp}(E)$ -based) and the SM lattice QCD determination of the intermediate window are in significant tension [without CMD-3].

- Tension in a^W_μ is larger than 4σ (depending on how lattice results are combined).
- Substantial agreement for a_{μ}^{SD} suggests that the tension is localized at intermediate/low energies E. G. Gagliardi, 6th Plenary Workshop TI, Bern, Sept. 4 2023

Potential impact of new CMD3 2pi data

Replace 2-pion data between 0.33 and 1.2 GeV by CMD3 data, keeping KNT19 data elsewhere (preliminary)

(M Golterman: Lattice 2023 talk)

New Physics to solve the new muon g-2 puzzle ?

NP in
$$\sigma_{had}(e^+e^- \rightarrow hadrons)$$
 such that

 $|. (a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{WP20}} \approx (a_{\mu}^{\text{HVP}})_{\text{EXP}}$

2. the approximate agreement between BMW and EXP is not spoiled

3. w/o a direct contribution a_{μ}^{NP} (i.e. NP not in muons)

L. Di Luzio, A.M., P. Paradisi, M. Passera, PLB 2022 (arXiv 2112.08312)

Can Δa_{μ} be due to a missing contribution in σ_{had} ?

[Marciano, Passera, Sirlin 2008 & 2010; Keshavarzi, Marciano, Passera, Sirlin 2020. See also Crivellin, Hoferichter, Manzari, Montull 2020; Malaescu, Schott 2020; Colangelo, Hoferichter, Stoffer 2020]

) a upward shift of
$$\sigma_{
m had}$$
 induces an increase of $\Delta lpha_{
m had}^{(5)}(M_Z)$

$$\alpha(M_Z) = \frac{\alpha}{1 - \Delta \alpha(M_Z) - \Delta \alpha_{\rm had}^{(5)}(M_Z) - \Delta \alpha_{\rm top}(M_Z)}$$
$$a_{\mu}^{\rm HLO} \simeq \frac{m_{\mu}^2}{12\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, \frac{\sigma(s)}{s}, \qquad \Delta \alpha_{\rm had}^{(5)} = \frac{M_Z^2}{4\pi\alpha^2} \int_{4m_{\pi}^2}^{\infty} ds \, \frac{\sigma(s)}{M_Z^2 - s}$$
$$\operatorname{Im} \operatorname{M} \operatorname{M} \operatorname{M} \sim \left| \operatorname{M} \operatorname{M} \right|^2 \sim \sigma(e^+e^- \to \gamma^* \to \mathrm{hadrons})$$

Shifts $\Delta \sigma(s)$ to fix Δa_{μ} are possible, but conflict with the EW fit if they occur above ~1 GeV Keshavarzi, Marciano, Passera, Sirlin, PRD 2020 (updated 2021)

Light New Physics in σ_{had}

• Light new physics inducing a sub-GeV modification of σ_{had} is the only possibility

Paride Paradisi (University of Padova and INFN)

Light New Physics in σ_{had}

 $\left| \swarrow \right|^2 \sim \sigma(e^+e^- \to \gamma^* \to \text{hadrons})$

$$(a_{\mu}^{\text{HVP}})_{e^+e^-} = \frac{\alpha}{\pi^2} \int_{m_{\pi^0}^2}^{\infty} \frac{\mathrm{d}s}{s} K(s) \operatorname{Im} \Pi_{\text{had}}(s) = \frac{1}{4\pi^3} \int_{m_{\pi^0}^2}^{\infty} \mathrm{d}s \, K(s) \sigma_{\text{had}}(s) \qquad \sigma_{\text{had}} = \sigma_{\text{had}}^{\text{SM}} + \Delta \sigma_{\text{had}}^{\text{NP}}$$

SUBTRACTION since NP does **NOT** contribute to the HVP at the LO, but it **DOES** contribute to the cross-section at the LO

a **POSITIVE** SHIFT on $(a_{\mu}^{\text{HVP}})_{e^+e^-}$ requires $\Delta \sigma_{\text{had}}^{\text{NP}} < 0$ (negative interference)

The unique scenario to obtain such a **SIZEABLE NEGATIVE interference**

- SIZEABLE → TREE-LEVEL contribution to modify σ_{had} at √s < 1 GeV (hence, sub-GeV mediator coupling to the hadronic and electron currents at tree-level)
- **NEGATIVE INTERF.** \rightarrow NP particle couples via a **VECTOR** current to the u, d quarks (given the dominance of the $\pi^+\pi^-$ channel)

$$\mathcal{L}_{Z'} \supset (g_V^e \,\overline{e} \gamma^\mu e + g_V^q \,\overline{q} \gamma^\mu q) Z'_\mu \qquad q = u, d \qquad m_{Z'} \lesssim 1 \text{ GeV}$$

a light spin-1 mediator with vector couplings to first generation SM fermions

$$\frac{\sigma_{\pi\pi}^{_{\rm SM+NP}}}{\sigma_{\pi\pi}^{_{\rm SM}}} = \left| 1 + \frac{g_V^e(g_V^u - g_V^d)}{e^2} \frac{s}{s - m_{Z'}^2 + im_{Z'}\Gamma_{Z'}} \right|^2$$

Di Luzio, A.M., Paradisi, Passera 2112. 08312

However, severe constraints on the Z' couplings to electrons and to hadrons

(rescaling the lattice QCD calculation of Frezzotti, Gagliardi, Lubicz, Martinelli, Sanfilippo and Simula 2112.01066)

At least TWO independent bounds prevent to get a sizeable contribution to Δa_{μ} modifying σ_{had} via Z' exchange to solve the "new" μ g-2 puzzle

 At present, the leading hadronic contribution aµ^{HLO} is computed via the timelike formula:

Alternatively, exchanging the x and s integrations in a_μHLO

Lautrup, Peterman, de Rafael, 1972

 $\Delta \alpha_{had}(t)$ is the hadronic contribution to the running of α in the spacelike region: a_{μ}^{HLO} can be extracted from scattering data!

M. Passera HC2NP September 23-28 2019

Carloni Calame, MP, Trentadue, Venanzoni, 2015

3

New Physics extracting $\Delta \alpha_{had}(t)$ at MUonE? Padova and Heidelberg 2020 \rightarrow NC

 \rightarrow NO, NP cannot spoil the validity of such extraction

MUonE: a new determination of $\Delta \alpha_{had}$

MUonE: Muon-electron scattering @ CERN

- $\Delta \alpha_{had}(t)$ can be measured via the elastic scattering $\mu e \rightarrow \mu e$.
- We propose to scatter a 150 GeV muon beam, available at CERN's North Area, on a fixed electron target (Beryllium). Modular apparatus: each station has one layer of Beryllium (target) followed by several thin Silicon strip detectors.

[Courtesy by M. Passera]

Letter of Intent submitted to CERN SPSC in 2019: Test run approved for 2021

NEW Measurement of the Electron Magnetic Moment

X. Fan,^{1,2,*} T. G. Myers,² B. A. D. Sukra,² and G. Gabrielse^{2,†}

¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA (Dated: September 28, 2022)

The electron magnetic moment in Bohr magnetons, $-\mu/\mu_B = 1.001\,159\,652\,180\,59\,(13)\,[0.13\,\text{ppt}]$, is consistent with a 2008 measurement and is 2.2 times more precise. The most precisely measured property of an elementary particle agrees with the most precise prediction of the Standard Model (SM) to 1 part in 10^{12} , the most precise confrontation of all theory and experiment. The SM test will improve further when discrepant measurements of the fine structure constant α are resolved, since the prediction is a function of α . The magnetic moment measurement and SM theory together predict $\alpha^{-1} = 137.035\,999\,166\,(15)\,[0.11\,\text{ppb}]$

Thanks, Subir, for the many (always lively!) discussions with you on physics (and not only physics...) and for reminding me that **DOUBT** rather than **CERTAINTY** is our guiding principle

to Subir, the tireless and unorthodox hunter for New Physics Beyond the Standard Models

BACK-UP SLIDES

LFV, (g – 2)_{lept} and (EDM)_{lept} correlations in Effective Theories

• BR $(\ell_i \rightarrow \ell_j \gamma)$ vs. $(g-2)_{\mu}$

$$BR(\mu \to e\gamma) \approx 3 \times 10^{-13} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{e\mu}}{10^{-5}}\right)^2$$
$$BR(\tau \to \mu\gamma) \approx 4 \times 10^{-8} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{\mu\tau}}{10^{-2}}\right)^2$$

EDMs vs. (g − 2)_µ

$$d_e \simeq \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right) 10^{-29} \left(\frac{\phi_e^{CPV}}{10^{-5}}\right) e \,\mathrm{cm}\,,$$

$$d_{\mu} \simeq \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right) 2 \times 10^{-22} \phi_{\mu}^{CPV} e \,\mathrm{cm}\,,$$

Main messages:

- ► $\Delta a_{\mu} \approx (3 \pm 1) \times 10^{-9}$ requires a nearly flavor and CP conserving NP
- **•** Large effects in the muon EDM $d_{\mu} \sim 10^{-22}~e~{
 m cm}$ are still allowed!

$$\frac{\Delta a_e}{\Delta a_{\mu}} = \frac{m_e^2}{m_{\mu}^2} \qquad \Longleftrightarrow \qquad \Delta a_e = \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right) 0.7 \times 10^{-13}$$

P. Paradisi, muEDM Workshop Pisa, 2022

Process	Present	Experiment	Future	Experiment
$\mu ightarrow oldsymbol{e}\gamma$	$4.2 imes 10^{-13}$	MEG	$pprox 6 imes 10^{-14}$	MEG II
$\mu ightarrow$ 3 e	$1.0 imes 10^{-12}$	SINDRUM	$pprox$ 10 $^{-16}$	Mu3e
μ^- Au $ ightarrow e^-$ Au	$7.0 imes 10^{-13}$	SINDRUM II	?	
μ^- Ti $ ightarrow e^-$ Ti	$4.3 imes 10^{-12}$	SINDRUM II	?	
μ^- Al $ ightarrow e^-$ Al	—		$pprox$ 10 $^{-16}$	COMET, MU2e
$ au o oldsymbol{e}\gamma$	$3.3 imes 10^{-8}$	Belle & BaBar	$\sim 10^{-9}$	Belle II
$ au ightarrow \mu \gamma$	$4.4 imes 10^{-8}$	Belle & BaBar	$\sim 10^{-9}$	Belle II
au ightarrow 3e	$2.7 imes 10^{-8}$	Belle & BaBar	$\sim 10^{-10}$	Belle II
$ au ightarrow 3\mu$	$2.1 imes 10^{-8}$	Belle & BaBar	$\sim 10^{-10}$	Belle II
de(e cm)	$1.1 imes 10^{-29}$	ACME	\sim 3 $ imes$ 10 $^{-31}$	ACME III
$d_{\mu}(e cm)$	$1.8 imes 10^{-19}$	Muon (g-2)	$\sim 10^{-22}$	PSI

Table: Present and future experimental sensitivities for relevant low-energy observables.

The **ELECTRON** magnetic moment

Status of ∆a_e as of 2012

 $\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}} = -9.2(8.1) \times 10^{-13},$ $\delta a_e \times 10^{13}: \quad (0.6)_{\text{QED4}}, \quad (0.4)_{\text{QED5}}, \quad (0.2)_{\text{HAD}}, \quad (7.6)_{\delta\alpha}, \quad (2.8)_{\delta a_e^{\text{EXP}}}.$

- The errors from QED4 and QED5 will be reduced soon to 0.1 × 10⁻¹³ [Kinoshita]
- We expect a reduction of δa^{EXP}_e to a part in 10⁻¹³ (or better). [Gabrielse]
- Work is also in progress for a significant reduction of δα. [Nez]
- Status of Δa_e as of 2018: 2.4σ discrepancy [Parker et al., Science, '18]

$$\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}}(\alpha_{\text{Berkeley}}) = -8.8(3.6) \times 10^{-13}$$

$$\delta a_e \times 10^{13} : \quad (0.1)_{\text{QED5}}, \quad (0.1)_{\text{HAD}}, \quad (2.3)_{\delta\alpha}, \quad (2.8)_{\delta a_e^{\text{EXP}}}$$

Status of Δa_e as of 2020: 1.6σ discrepancy [Morel et al., Nature, '20]

$$\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}}(\alpha_{\text{LKB2020}}) = 4.8(3.0) \times 10^{-13}$$

$$\delta a_e \times 10^{13} : \quad (0.1)_{\text{QED5}}, \quad (0.1)_{\text{HAD}}, \quad (0.9)_{\delta\alpha}, \quad (2.8)_{\delta a_e^{\text{EXP}}}$$

Figure 15: Comparison of results for $a_{\mu}^{\text{HVP, LO}}[\pi\pi]$, evaluated between 0.6 GeV and 0.9 GeV for the various experiments.

NP in Bhabha scattering?

• What if the measurement of the KLOE luminosity is affected by NP ?

[Darmé, Grilli di Cortona, Nardi 2112.09139]

 $\sigma_{
m had} \propto N_{
m had}/{\cal L}_{e^+e^-}$

 $\sigma_{
m had}
ightarrow \sigma_{
m had} (1 + \delta_R)$

 $a_{\mu}^{\mathrm{LO,HVP}} \rightarrow a_{\mu}^{\mathrm{LO,HVP}} \left(1 + \delta_{R}\right)$

Figure 3. Parameter range compatible at 2σ with the experimental measurement of Δa_{μ} (green region) resulting from a redetermination of the KLOE luminosity, for $\alpha_D = 0.5$, $m_{\chi_2} = 0.95 m_V$ and $m_{\chi_1} = 25$ MeV. In the blue region the KLOE and BaBar results for σ_{had} are brought into agreement at 2σ . The red region corresponds to a shift of the KLOE measurement in tension with BaBar (and with the other experiments) at more than 2σ .

The new muon g-2 puzzle

$e^+e^- \rightarrow \pi^+\pi^-$ dominance of the low-energy hadronic cross-section

$\Lambda \approx v$: SUSY and the muon (g - 2)

Figure: LHC Run 2 bounds on SUSY scenario for the muon g - 2 anomaly for tan $\beta = 40$. Orange (yellow) regions satisfy the muon g - 2 anomaly at the 1σ (2σ) level [Endo et al., '20].

Paride Paradisi (University of Padova and INFN)

Light New Physics in σ_{had}

• Light new physics inducing a sub-GeV modification of σ_{had} is the only possibility

2. NP coupled only to hadrons

FSR effects due to NP should be included into $\sigma_{had}(s)$, not easy to be accounted for... (depend on exp. cuts and mass of NP)

-----> hov

however, we know that in the QED case

$$(a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{FSR}} \approx 50 \times 10^{-11} \longrightarrow |(a_{\mu}^{\text{HVP}})_{\text{BMW}} - (a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{WP20}}| \approx 150 \times 10^{-11}$$

- Run 1 (2018): $15 \times 10^9 e^+$ analyzed
- Run 2 (2019) + Run 3 (2020): $71 \times 10^9 e^+$ analyzed
- Run 1: \pm 434 (stat) \pm 157 (syst) \pm 25 (ext param) (ppb)
- Run 2/3: \pm 201 (stat) \pm 68 (syst) \pm 25 (ext param) (ppb)

QED contribution

"g – 2 is not an experiment: it is a way of life."

[John Adams (Head of the Proton Synchrotron at CERN (1954-1961)]

This statement also applies to many theorists! [Nyffeler '16]

 $a_{\mu}^{
m QED}=(1/2)~(lpha/\pi)$ [Schwinger, 1948]

 $+0.765857426 (16) (\alpha/\pi)^2$

[Sommerfield; Petermann; Suura&Wichmann '57; Elend '66]

 $+ 24.05050988 (28) (\alpha/\pi)^3$

[Remiddi, Laporta, Barbieri...; Czarnecki, Skrzypek '99]

+ 130.8780 (60) $(\alpha/\pi)^4$

[Kinoshita et al. '81-'15; Steinhauser et al. '13-'16; Laporta '17] + 750.86 (88) $(\alpha/\pi)^5$ [Kinoshita et al. '90-'19]

[WP20 \equiv T. Aoyama *et al.*, Phys. Rept. '20]

EW contribution

One-loop plus higher-order terms:

The new muon g-2 puzzle

a_µ^{HLO}: timelike vs spacelike method

