
https://root.cern

ROOT
Data Analysis Framework

RNTuple: Status and Plans

 Jakob Blomer, Florine de Geus, Vincenzo Padulano

RNTuple Format and Feature Assessment
2023-11-06

https://root.cern

Introduction

2

Based on 25+ years of TTree experience, RNTuple is a redesigned columnar I/O subsystem aiming at

● Less disk and CPU usage
○ Significantly smaller files
○ Significantly higher throughput, often by factors

● Systematic use of data checksums and runtime exceptions to prevent silent I/O errors
● Efficient support of modern hardware:

○ asynchronous & parallel I/O
○ many-core friendly
○ Direct data transfer to GPU memory

● Native support for object stores in addition to local and remote ROOT files
● Coverage of all of today’s TTree use cases (reconstruction, AOD production, analysis),

but not all of the TTree features
● Binary format defined in a dedicated specification

TTree enters legacy support mode

https://github.com/root-project/root/blob/b7e39da024bf36b5317b0a15cf15f431846dd629/tree/ntuple/v7/doc/specifications.md

Contributors to space savings
○ More compact representation of collections and bools
○ Data encoding optimized for better compression ratio

RNTuple Storage Efficiency

3

ATLAS DAOD_PHYS Data Sample (∼200k events)
RNTuple Standard Benchmarks, zstd compression

Single-Core RDataFrame Throughput

4

Contributors to higher throughput:
○ Fewer bytes to read and decompress due to more compact data representation
○ Asynchronous reading
○ Parallel I/O improves SSD throughput (uses io_uring)
○ Fewer instructions in the I/O code path

RNTuple standard
benchmarks, input
data from various
origins

Time to plot: RDataFrame analysis with RNTuple input data

https://github.com/jblomer/iotools/tree/chep23
https://github.com/jblomer/iotools/tree/chep23

Analysis Description Language (ADL) Benchmarks

5

1 branch/top-level fields read,
no cuts/calculations applied

14 (NanoAOD), 12 (PHYSLITE) branches/top-level fields read,
some (basic) cuts/calculations applied

● NanoAOD: Run 1 data , 404 MB (TTree), 254 MB (RNTuple), 1.18M events, 86 branches/top-level fields
○ Flat: only scalars/simple collections (stored in leaf count arrays)

● PHYSLITE: Run 2 data, 7.2 GB (TTree), 4.2 GB (RNTuple), 1.18M events, 785 branches/top-level fields
○ xAOD physics objects (not read here) and analysis objects (std::vector types)

● Both samples are zstd compressed
● Single-core throughput with RDataFrame RDataFrame ADL implementation

for NanoAOD + PHYSLITE

https://github.com/enirolf/opendata-benchmarks/tree/atlas_benchmarks

Support for Distributed Object Stores

6

Distributed RDataFrame on 1TB LHCb ntuples in a DAOS distributed object store, 100Gbit/s network

Potential Future RNTuple Directions

The RNTuple design opens the door to new functionality, which can be
worked on after the initial production release.

For example:
● Horizontal fast merge ("persistified friends")
● Zero-copy merge on copy-on-write file systems
● Better metadata support (e.g. scale factors, varied columns)
● Layout optimizer that rewrites a file for strictly linear reads

7

TTree → RNTuple: Overview

8

● RNTuple data stored in ROOT files
○ Usual access options: local, XRootD, HTTP
○ New: native object store support (DAOS, S3)

● For RDataFrame code: no change required
● Consistent tooling

○ RBrowser support
○ Disk-to-disk importer TTree → RNTuple [1] [2]
○ T[File|Buffer|MPI]Merger & hadd support (RNTuple version 1)

● RNTuple adopts TTree’s I/O customization and schema evolution system (RNTuple version 1)
● Native RNTuple API for writing and reading, targeting frameworks

○ Follows modern C++ core guidelines

● TTree::Draw will not be replicated directly in RNTuple;
a possible replacement on top of RDataFrame is under discussion

RNTuple Compatibility Overview

9

For maximum optimization opportunities, RNTuple introduces a new event data format and a new API.
At the same time, RNTuple aims at smooth integration with the ROOT/HEP ecosystem.

A TTree and an RNTuple in the same ROOT file. In this example, the RNTuple
data has been converted from the tree using the RNTupleImporter.

https://root.cern.ch/doc/master/ntpl008__import_8C.html
https://root.cern.ch/doc/master/classROOT_1_1Experimental_1_1RNTupleImporter.html

Writing and Deriving Data

10

Entry-by-entry writing:
● Includes “late model extensions” to accommodate for frameworks’ on-demand schema definition
● Bulk writing: work in progress (bulk reading available)
● Multi-threaded writes:

○ Available: thread-parallel preparation of entries, filling still a serialization point
○ Planned: thread-parallel serialization of complete clusters, including writing

■ Work will start in 2024, may land in RNTuple 1.0

Reshaping data: dataset derivation without decompressing / deserialization:
● Fast merging of files, discarding columns (fast “CloneTree”)
● Will be available for RNTuple 1.0

Data combinatorics – virtual data sets
● Aligned friends (available) and chains (will be available for RNTuple 1.0)
● EP R&D program on more advanced use cases, such as stored filters, indexed joins, and

provenance meta-data; this is considered a potential extension after the first production release
(post version 1.0)

Early Adoption

11

● ATLAS: Experimental support for writing and reading DAOD, AOD, HITS
● CMS: Experimental support for writing NanoAOD files, work-in-progress on MiniAOD
● uproot: Independent implementation of the RNTuple file format;

validated the RNTuple format specification

Planned: libRNTupleLite
● Low-level C API to support languages other than C++ and Python (e.g., Julia, Rust)
● Part of a regular ROOT build, i.e. full functionality in principle available and only potentially limited by

the C interface
● Depends on 3rd party funding, can be postponed after the first RNTuple production release

https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md

RNTuple Type Support

12

RNTuple supports a subset of the ROOT I/O enabled types

Type Class Types EDM Coverage RNTuple Status

PoD
bool, std::byte, (unsigned) char,
(u)int[8,16,32,64]_t, float, double, (f16)

Flat n-tuple
Reduced

AOD

Full AOD /
ESD / RECO

Available

(Nested) vectors
std::vector, RVec, std::array,
1D C-style fixed-size arrays

Available

String std::string Available

User-defined classes Non-cyclic classes with dictionaries Available

User-defined enums Scoped/unscoped enums with dictionaries Available

User-defined collections Non-associative collection proxy Available

stdlib types
std::pair, std::tuple, std::bitset,
std::set, std::map, std::atomic

Available

Alternating types
std::variant, std::unique_ptr,
std::optional (upcoming)

Available

Intra-event links "&Electrons[7]" post version 1.0

Low-precision
floating points

Double32_t, Float16_t, (b)float16

Optimization benefitting all EDMs
Avail. / PR

Custom precision and range In design / v1.0
Precision cascades post version 1.0

RNTuple: Binary Format

13

RNTuple Binary Format Walk-Through

14

Benefits of new binary format

● More efficient storage of collections
and boolean values

● Addition of new basic types, e.g. f16
● Little-endian numbers: memory

mappable on most contemporary
platforms

● Type-based encoding: e.g. zig-zag for
signed ints, bit packing for bools, etc.

● Split storage for arbitrarily nested
collections

● More scalable meta-data, better
memory control

● New default compression: zstd
● Format independent of TFile

Note: RNTuple has its own schema encoding,
independent of the streamer info

RNTuple Read Pattern

15

1. File open: read anchor, header, footer (once)
2. Read page list (once per cluster group)
3. Background thread: read-ahead page groups for the next k clusters

in vector reads, close-by byte ranges get coalesced

● (Simple) transformations on the input data to make them better suited for the compression algorithm,
sometimes also called compression filters

● Extra computational effort in the noise of the compression algorithm (zstd, etc.)
● Encodings in RNTuple

○ Bools (byte) → bits
○ Floats, Ints → byte split

helps if exponent is identical, if least significant bits are zero, and for small ints

○ Collection offset → delta encoding + byte split:
converts monotonically increasing ints into small, similar/identical ints

○ Signed integers (e.g., charge): zigzag encoding + byte split

RNTuple Column Encodings

16

Float 1 Float 2 Float 3

https://github.com/root-project/root/blob/master/tree/ntuple/v7/inc/ROOT/RColumnElement.hxx#L46

Support for Distributed Object Stores

17

● RNTuple makes a
conscious decision how to
map its data structures to
objects

● Well suited for columnar
analysis approaches

● Currently supported
○ DAOS (HPC)
○ S3 (upcoming, Cloud)

● Investigating reshaping of
data during staging from
grid storage to object store

RNTuple Limits

18

Limit Value Reason / Comment

Volume 1-10 PB (theoretically more)
Assuming 10k cluster groups of 10k clusters of
10-100MB each

Number of elements, entries 2^64 Using default (Split)Index64, otherwise 2^32
Cluster & entry size 8TB (depends on pagination) Assuming limit of 4B pages of 4kB each
Page size 2B elements, 256MB-2GB #elements * element size, 2GB limit from locator
Element size 8kB 16bit for number of bits per element
Number of column types 64k 16bit for column type
Envelope size 2^48B (~280TB) Envelope header encoding
Field / type version 4B Field meta-data encoding
Number of fields, columns 4B (foreseen: <10M) 32bit column / field IDs, list frame limit
Number of clusters per group 4B (foreseen: <10k) List frame limits, cluster group summary encoding
Number of pages per cluster per column 4B List frame limits

Note: RNTuple in addition is subject to limits from TFile / object store backend

RNTuple API

19

RNTuple Class Design

20

● General design guidelines
○ Following C++ core guidelines
○ Use of exceptions (RException)
○ Conditionally thread-safe
○ Compile-time type-safe interfaces and

void * interfaces
○ Shared pointers for values to be

(de-)serialized
○ Separation of read and write path

● For reading from files, RNTuple uses RRawFile,
i.e. no dependency on TFile or TBuffer. RRawFile
has plugins for HTTP and XRootD

API Walk-Through

21

● RNTuple
○ Anchor, references RNTuple data
○ Can be used as in input to other classes,

e.g. RNTupleReader
○ Can create an RPageSource

● RPageSource / RPageSink
○ Reads and writes pages from the storage

backend (file, object store, etc)
○ No concept of entries, only columns
○ Should not be user-facing
○ Gives access to the RNTupleDescriptor

● RNTupleDescriptor
○ Gives access to the on-disk meta-data

auto anchor = file->Get<RNTuple>("ntpl");
auto reader = RNTupleReader::Open(anchor); // unique_ptr
auto pt =
 reader->GetDefaultValueAs<std::vector<double>>("pt");
reader->LoadEntry(0);
// See writer example for the void * API using entries

auto descriptor = reader->GetDescriptor(); // shared_ptr
for (const auto &fieldDesc : desc->GetTopLevelFields()) {
 std::cout << fieldDesc.GetFieldName() << ": "
 << fieldDesc.GetTypeName() << std::endl;
}

API Walk-Through

22

● RField<T>
○ Central class: connects the in-memory

representation of data to its on-disk
representation

○ Can connect to a page source or sink

● RField::RValue
○ Connects a value in memory to a

corresponding field
○ Used to safely read/write data (prevents

mistakenly reading/writing from wrong field)

● RNTupleModel
○ Schema representation as a tree of fields
○ Can create entries

● REntry
○ Represents a row: values for the top-level

fields of a model

● RNTupleReader, RNTupleWriter
○ Event iteration for reading/writing

auto fieldEta =
 std::make_unique<RField<std::vector<double>>>("eta");
auto fieldPt =
 Detail::RFieldBase::Create("pt", "std::vector<double>").Unwrap();

auto fldDbl32 = dynamic_cast<RField<double> *>(
 std::addressof(*fieldPt->begin()));
fldDbl32->SetDouble32();

auto model = RNTupleModel::Create();
model->AddField(std::move(fieldEta));
model->AddField(std::move(fieldPt));
{
 auto writer = RNTupleWriter::Append(std::move(model), "ntpl", f);
 auto entry = writer->CreateBareEntry().lock(); // weak_ptr
 entry->BindRaw("eta", myEta);
 entry->BindRaw("pt", myPt);
 writer->Fill(*entry);
}

RNTuple Tooling

23

RNTuple Data in the RBrowser

24

RNTuple Utilities

Convert your existing TTree to RNTuple:

25

Get detailed storage information for your RNTuple:

#include <ROOT/RNTupleImporter.hxx>
using ROOT::Experimental::RNTupleImporter;

auto importer = RNTupleImporter::Create(
 “Events”,
 “myNanoAOD.ttree.root”,
 “myNanoAOD.rntuple.root”);

// Optional
importer->SetNTupleName(“EventsNTuple”);

auto writeOptions = importer->GetWriteOptions();
// Optional, default is zstd level 5
auto algo = RCompressionSetting::EAlgorithm::kLZMA;
writeOptions.SetCompression(algo, 7);
importer->SetWriteOptions(writeOptions);

importer->Import();

#include <ROOT/RNTupleInspector.hxx>
using ROOT::Experimental::RNTupleInspector;

auto inspector = RNTupleInspector::Create(
 “EventsNTuple”, “myNanoAOD.rntuple.root”);

std::cout << “My NanoAOD is compressed using ”
 << inspector->GetCompressionSettingsAsString()
 << std::endl;

inspector->PrintColumnTypeInfo();

my NanoAOD is compressed using lzma (level 7)
 column type | count | # elems | compr. bytes | uncompr. bytes
-------------|-- ----|------------|--------------|-----------------
SplitIndex64 | 5 | 267230990 | 84109056 | 2137847920
 SplitReal32 | 45 | 3856668029 | 11402474398 | 15426672116
 SplitInt32 | 15 | 1436663181 | 147427186 | 5746652724

RNTupleImporter docs and tutorial
(CLI coming soon!)

RNTupleInspector docs
(tutorial coming soon!)

https://root.cern/doc/master/classROOT_1_1Experimental_1_1RNTupleImporter.html
https://root.cern/doc/master/ntpl008__import_8C.html
https://root.cern/doc/master/classROOT_1_1Experimental_1_1RNTupleInspector.html

RNTupleMetrics

26

auto anchor = file->Get<RNTuple>("ntpl");
auto reader = RNTupleReader::Open(anchor);
reader->EnableMetrics();
// …
reader->PrintInfo(ENTupleInfo::kMetrics);

auto tree = file->Get<TTree>("tree");
TTreePerfStats *ps = new TTreePerfStats("ioperf", tree);
// …
ps->Print();

RNTuple Schedule

27

Schedule Presented to LHCC, Updated

Proof of
concept Prototype First

exploitation
Pre-

production Production

~2018-19 ~2019-20 ~2021-22 ~2022-23 ~2023-24

✅ Architecture
✅ Review on
 state-of-the-art
✅ First prototypes

✅ Adoption in
 ROOT::Experimental
✅ I/O scheduler for
 local and remote
 access
✅ Performance
 validation

⛅ Object store support
 ✅ DAOS (HPC)
 ⛅ S3 (Cloud)
✅ RNTuple version 1 spec
⛅ RNTupleLite
⛅ Schema evolution
✅ Disk-to-disk conversion
🖉 Virtual data sets for
 skims and selections
✅ First exposure to
 frameworks:
 ✅ CMSSW nanoAOD
 output module
 ✅ Prototyping by
 ATLAS, CMS, LHCb
 I/O experts

✅ RDataFrame
 bulk processing
⛅ Debugging and
 inspection tools
🖉 Metadata API
⛅ Special use case
 support: e.g. backfill,
 in-memory adapters
✅ XRootD support
⛅ Validation of
 feature coverage
⛅ Training experiments’
 core developers
⛅ Large-scale
 experiment
 benchmarks

🖉 PB scale tests
🖉 Automatic optimization
 features
⛅ Low-precision floats
🖉 ML Training: direct GPU
 transfer
🖉 End-user training
⛅ Training and support for
 code and data migration

✅ = available
⛅ = under development
🖉 = programme of work
— = in collaboration with
 users/experiments

Growing importance of coordination & collaboration with experiment I/O experts
28

Work items defined: Nov 2021
Development state: Oct 2023

RNTuple Development Plan

Features Foreseen for Removal

30

Feature Discussion: Features Foreseen for Removal

31

● References across files, i.e. TRef and TBranchRef
○ Doesn’t scale and limits parallelization potential
○ But support for intra-event references is planned!

● Raw pointers and networks of pointers
○ Hard to define the memory ownership model

● std::set, std::map
○ Currently supported, but should discuss potential removal
○ Potentially very slow at runtime

Feature Discussion: Features Foreseen for Removal

32

● Dynamic polymorphism in field types
○ Cause for trouble
○ … and too much runtime overhead

● Recursive data structures
○ Cannot properly split the type

● Circular in-memory datasets
○ Unclear benefits

struct Event {
 std::vector<std::unique_ptr<Event>> evts;
};

struct Base{...};
struct D1: public Base{...};
struct D2: public Base{...};
struct Event{
 std::unique_ptr<Base> fAnyDerived;
};

TTree t{“name”, “title”};
t.SetCircular(10000 /*maxEntries*/);

Feature Discussion: Features Foreseen for Removal

33

● Changing compression on a page level
○ Allow for cluster/column level compression

● TTree::SetAlias
○ And similar APIs that mix processing with data layout

● RNTuple in legacy TBrowser
○ Use RBrowser instead (on by default)

Backup

34

ROOT Data Compression

35

● RNTuple: a set of compressed pages/baskets
○ Available compression algorithms:

■ zlib: legacy
■ zstd: ROOT 7, RNTuple default
■ lz4: fast, low compression ratio
■ lzma: slow, high compression ratio

○ Arrays of column values are written into pages
○ Compression prefilters (see next slide)
○ Lossless compression is transparent / automatic

● Support for lossy compression
○ Double32_t, Float16_t: low-precision on disk, double/single precision in memory [1]

■ In addition: allows for fine-grained control over number of mantissa bits
■ Or: range specification with bit resolution, e.g. [0..π, 6 bits]
■ Full functionality set available in TTree, soon also in RNTuple

○ R&D: BLAST compression algorithm & Precision Cascades (ongoing R&D)

https://root.cern/doc/master/double32_8C.html

…
2.71934
5.30711
1.16232
2.93005
0.07698

…

36

Precision Cascades I/3

 2 . 7 1 9 3 4
 5 . 3 0 7 1 1
 1 . 1 6 2 3 2
 2 . 9 3 0 0 5
 0 . 0 7 6 9 8

37

Precision Cascades 2/3

Precision Cascades 3/3

⏺ Enables higher precision to be stored separately
without duplicating information

⏺ User can define levels of precision

⬦ Varying levels of precision can be retrieved

Compression level 43
(low comp)

Compression level 51
(mid comp)

Original dataset

38

Most
compressive

Least
compressive

51 43

Original

std::vector<Int_t> levels = { 51, 43 };
ROOT::PrecisionCascadeCompressionConfig targetConfig(

ROOT::RCompressionSetting::EAlgorithm::kBLAST,
levels,
true /* Keep also the residual file */);

…
lossy_branch->SetCompressionSettings(targetConfig);

Ongoing R&D

