
CMS Feedback on RNTuple

Matti Kortelainen
RNTuple Format and Feature Assessment
6 November 2023



2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

• Data products produced by CMSSW algorithms are serialized+stored using ROOT
– Event, LuminosityBlock, and Run data are stored in separate TTrees
– Also various framework metadata is stored (forming the “EDM format”)

• Main data tiers: RAW, AOD, MiniAOD, NanoAOD
– All in “EDM format”, plus NanoAOD as a “flat ntuple” (and RNTuple prototype)

• In principle nearly anything serializable by ROOT is allowed, except
– Should have no raw pointers (some exceptions, listed later)
– No pointers to other data products

• We have our own implementation of “persistable reference to other data product”

• In practice we have mostly (nested) std::vector’s of things
– Plus some std::set/std::map/std::unordered_map

• All data types are wrapped in edm::Wrapper<T>
– ROOT gets to know concrete type, framework uses base class pointer in many places

CMS data model

2



2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

• CMS has several data types that rely on dynamic polymorphism that are widely 
used
– “Widely” meaning both data tiers (AOD, MiniAOD, special skims, AlCa) and places in code 

(thousands)

• CMS wants to eventually move to simpler data types. 
– Migration appears to be hard but doable by Run 4, but with large uncertainties
– We need help from ROOT team to support a reasonable transition

• We need to strive for gradual transformation
• Need TTree to support the same data types that we would use in RNTuple

• E.g. std::variant initially looks like a plausible direct replacement, but details 
make it difficult to use in all cases
– Increases coupling, have class hierarchy of O(100) classes

Dynamic polymorphism

3



2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

• Currently std::set and std::map are being used in many places
– Also some std::unordered_map

• Moving to sorted std::vectors should be technically feasible
– But need to stay backwards compatible

std::set and std::map

4



2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

• CMS uses Structure-of-Arrays data structures when interacting with GPUs
– Want to have a single memory block for all the data in the SoA data structure

• CMS’ current SoA data structure can be persisted with TTree, but is awkward
– Requires duplicating nontrivial, error prone snippets in the selection XML files

• We want to have a better mechanism to serialize and store SoAs
– Preferably in a way that CMS can specify the allocation strategy

• Example in the following slides
– More details in E. Cano ACAT 2022

SoA data structures

5

https://indico.cern.ch/event/1106990/contributions/4991308/


2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

SoA example

6

• Layout specifies how the memory 
block is interpreted
– Can contain scalars, columns, and 

Eigen vector/matrix
– Padding at the end of each column to 

match alignment

• Memory ownership is handled 
separately

• Want the columns to be visible as 
columns in TTree/RNTuple



2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

SoA example (2)

7

Class containing both the layout and 
the owning pointer (Alpaka buffer)

Serialization is done 
through the 
non-owning Layout



2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

• Event-level concurrency is perfectly scalable for CMS
– CMS prefers to have one CPU thread per concurrent event

• Framework scales perfectly up to at least thousands of concurrent events, I/O does not
– C. Jones CHEP 2023

• We want storage that can scale with concurrent events
• TTree parallelizes along branches
– But branches have very unequal read/write times, in practice we end up being dominated 

by a few
– As far as we can see, we gain about 2x speedup (before hitting Amdahl’s law)

• We would like to see the concurrency used in I/O to line up with event-level 
concurrency
– E.g. asynchronous API, or thread-safe/efficient API

Concurrency

8

https://indico.jlab.org/event/459/contributions/11843/


2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

• We would like to be able to pass arbitrary data down into the IO read rules from 
the equivalent for TBranch::GetEntry() function call
– CMS’ version of “TRef” (persistent reference to other data product) relies on a pointer to 

the “Event”. Right now we have to pass it down via a thread_local variable. If the actual IO 
read rule gets run in a different thread than the one calling the “GetEntry()”, this 
functionality breaks.

– More general, e.g. in schema evolution, there can easily be cases where passing arbitrary 
data to the IO read rules would be extremely useful

Concurrency (2)

9



2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

• CMSSW does not use TRef
• CMS’ data types do not use (networks of) raw pointers, except in
– HepMC
– TH1[SIFD]

– Serialization of the SoA
– (there may be more corner cases)

• CMS’ persistent data types do not use std::shared_ptr
• Some CMS data types use multidimensional C-arrays
• CMSSW framework doesn’t depend TTree::Draw()
– I would imagine the proposed separate ROOT::Plot() functionality would be sufficient for 

users
– What about TTree::Scan() like functionality?

Comments on miscellaneous features

10



2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

• What about std::unordered_set and std::unordered_map?
• What are the plans for reading/writing Events concurrently?
• Are there plans for direct input/output to GPU memory?
• What is the plan for schema evolution support?
• Will ROOT’s standalone serialization API continue to be supported?
• Are there plans for TTreeCache-equivalent for RNTuple?
• To what degree will TTree writing be supported after RNTuple is deployed?
– We assume reading TTree will be supported ~forever

• What are the plans for low-precision floats/ints? (e.g. float16, int4)
• Are there plans for std::span or std::mdspan?
• What about interoperability with other languages such as Python? E.g. storing a 
dict in RNTuple?

Questions on future plans

11



2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

• Need to be able to create a Field from std::type_info and/or class name
• Need to be able to pass the data to/from the Field via void const*
– Simplifies a lot how framework deals with data types

• Note that std::any would likely not work
– Framework guarantees the type safety for user code

• Support for schema evolution
– We would like to see ROOT to preserve the name of an inline namespace

• Inline namespaces may be a useful way to deal with library evolution

• Long and wide stress-testing to iron out (rare) bugs
– We have decades of experience with TTree

• Test suite that covers corner and error cases

CMS needs in ROOT in order to move to RNTuple

12



2023-11-06 Matti Kortelainen | CMS Feedback on RNTuple

• Q1 2024: Need support for std::variant in TTree to help the transition to RNTuple
– CMS needs an evolutionary path towards RNTuple migration
– We want to decouple the data type migration from TTree-to-RNTuple migration

• Q2 2024: Need to be able to create Field from std::type_info/class name, and 
fill it via void const*

• A possible strawman timeline towards Run 4
– Q3 2024: Need production version of ROOT with “NanoAOD-complete” RNTuple
– 2025: First CMS large-scale RNTuple-NanoAOD production
– Q2 2026: Need production version of ROOT with complete RNTuple
– Q1 2027: CMSSW release for 2027 data challenge

• Want to use RNTuple as the file format in this challenge
• Need all AOD and MiniAOD data types to be compatible with RNTuple

Strawman timeline for the feature needs

13


