

RNTuple Infrastructure needed for production workflows in ATLAS

Alaettin Serhan Mete

Argonne National Laboratory

with inputs from Peter Van Gemmeren (ANL), Marcin Nowak (BNL), Maciej Szymański (ANL)

DEPARTMENT OF NERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

RNTuple Format and Feature Assessment 6-7 November 2023

Introduction

• Full production needs a lot more than reading/writing RNTuples

• The shopping list includes (but is not limited to):

- Custom indexing (a la TTree::BuildIndex)
- Fast Merging RNTuples
- Having various utilities/tools to peek into, compare, validate, ... RNTuples
- Having the ability to optimize parameters for various use-cases
- Having support for relational RNTuples (a.k.a. *friendship*)

• As in any such big migration, new hurdles will be uncovered

• Therefore, having a close collaboration along the way is extremely crucial

• This talk will highlight some of these essential topics

- \circ $\,$ Focus is given to those that need input/work beyond ATLAS/Athena
- It would, nonetheless, be beneficial to share work/expertise across experiments if applicable

Custom Indexing (a la TTree::BuildIndex)

• A while ago we switched to building/using custom indices

- Each tree has an additional branch, called index_ref, holding a unique id for each event
- For each object the value of this index is stored in a token (along w/ the branch info. etc.)
- When reading an object, we use this information through TTree's custom index support
 - TTree::BuildIndex, TTree::GetEntryNumberWithIndex, etc.

• This functionality is essential for a number of use cases

- Fast merging worker outputs in AthenaMP jobs with SharedWriter (more on this later on)
- Cross-referencing event sample augmentation trees (more on this later on)

• The same functionality is also needed for RNTuple

- In the current prototype we *essentially* use simple row indices
 - We have an associated field for index_ref but this is internally mapped to a plain index

Fast Merging (via TFileMerger)

• We use fast-merging primarily in the DAOD production jobs

- These jobs execute in multi-process Athena (AthenaMP) w/ SharedWriter
 - Each worker produces its own in-memory output (via TMemFile)
 - This allows us to parallelize CPU intensive I/O operations such as compression
 - Then SharedWriter fast-merges the worker outputs into a single file
 - Following parallelMergeServer/parallelMergeClient approach of ROOT

• This relies on ROOT's ability to fast merge TTree/RNTuple

- For now we cannot utilize this version of SharedWriter for RNTuple samples
- SharedWriter also supports another, so-called, *legacy* mode that can handle RNTuples

• We have an ongoing effort w/ the core ROOT I/O team on this

- A functional RNTupleMerger prototype is being iterated at <u>root/pull/13858</u>
- It will definitely need a number of follow-up PRs to fully iron things out (hadd etc.)

Miscellaneous Topics

• We have a number of tools built around the TTree infrastructure

- Peeking into in-file meta data (see Maciej's <u>talk</u>) to configure the job based on the input file
- Checking if two files are content-wise identical as far as event/meta data is concerned
- Validating the output file at the end of the job to ensure there is no corruption
- Summarizing the file content in terms of in-memory/disk-space sizes per container

• Some are inherently ATLAS specific but some can be shared

- A good candidate is comparison of files, which is a crucial functionality for data processing
- Another good candidate is validating against data corruption etc.

• Are there any plans within ROOT and/or can such an effort be coordinated cross-experiment?

• Such an effort can be coordinated elsewhere, e.g., HEP Software Foundation etc.

Miscellaneous Topics (cont'd)

• Support for various modes of operations: Athena(MP/MT)

- Athena workflows support serial, multi-process, and multi-threaded modes
- We also utilize ROOT's IMT (both ROOT and Athena uses TBB, hence share thread pools)

Recently discovered AthenaMT + ROOT IMT + RNTuple don't get along very well

- Originally noticed in multi-threaded reconstruction jobs producing AODs w/ RNTuple
- Traced back to the default buffered writing (likely compression, but to be followed-up)
- Worked around (for now) with RNTupleWriteOptions::SetUseBufferedWrite(false)

• Different modes/workflows also have different conditions

- For example, how we read input data: Linear vs semi-linear vs random event access etc.
- Detailed studies w/ TTree were done that resulted in, e.g., <u>root/pull/1065</u> from 2017
- Needless to say, similar studies need to be performed for RNTuple, too

• Uncovering/debugging/fixing such issues rely on early testing

• We shouldn't overlook the importance of such subjects

Custom Optimizations for Different Use-cases

• Needless to say, not all data products are the same

• For example, event size can vary a lot between up/down-stream data products

• Over the years we optimized these for the TTree

- A prime example of this is the event clustering that can be tuned w/ TTree::AutoFlush
- Such optimizations have implications on CPU/memory/disk-space usage, quite complex!

• How these would translate into RNTuple?

- What would be the knobs we can turn etc.
- We should have ample time to test the pre-production infrastructure well ahead of time

• I think this is another synergetic topic across all clients

• Sharing expertise together w/ the guidance of the core ROOT I/O is very important

Event Sample Augmentation (a.k.a. *friendship***)**

• In Run-3 we had a paradigm shift in the analysis model

- Left Run-2's many (skimmed) DAODs in favor or a single-ish (unskimmed) DAOD(_PHYS)
- What happens if (many) analyses need (even a handful of) additional information in this format?
 - Option 1: Expand the common format w/ the new variables
 - Wasteful because not all events need all variables unconditionally
 - Option 2: Copy the common variables + new variables in a new format (Run-2 Style)

8

- Wasteful because one replicates the (possibly large) common data unnecessarily
- Option 3: Augment the main unskimmed data w/ skimmed variables (Event Sample Aug.)

RUN 3, with Event Sample Augmentation

DAOD

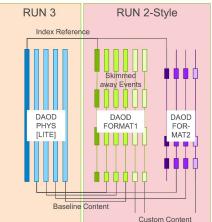
FORMAT

1 & 2:

index and additions

Content

Synchronized Index Reference


DAOD

PHYS

[LITE]

unmodified

Content

See Peter's CHEP talk

Event Sample Augmentation (a.k.a. *friendship***)**

• Prototype shows promising results in terms of disk-space

- Augment unskimmed PHYS content w/ Long-Lived Particles (LLP) content
 - Increase the event size by 40%, for skim of 40% of the events
 - **Run-2 Style Approach:** 140% extra data for 40% of events → **56% more storage**
 - Event Sample Augmentation: 40% extra data for 40% of events → 16% more storage

• TTree based implementation

- Use a custom branch as the main index (via TTree::BuildIndex)
 - Synchronized across all trees and used to cross-reference events across trees
- Athena has its own navigational structure to handle reading/writing
- However, physics analyses software rely on the TTree friendship concept

• A similar functionality in RNTuple would be the ideal scenario

• RPageSourceFriends is perhaps the way forward with this...

Conclusions & Outlook

• Adopting RNTuple in production needs a lot of work!

• The effort goes well beyond just data model support (beyond ATLAS, too)

• We need a number of core functionality on the ROOT side

• We highlighted a few of these in this talk, e.g., fast merging RNTuples, friend RNTuples etc.

• A number of tools are probably needed by all experiments

- For example, diff-ing RNTuples for ensuring binary identicality of event/meta data etc.
- Collaborating w/ other customers on these can be beneficial to all

• Core Athena support ≠ Everything is done

• Physics analyses need to adopt the new technology as well, which needs time/effort

• Our overall goal/plan is to:

- Address all open issues on the core Athena side by the end of Run-3, i.e., next ~1.5 years
- Use much of the Long Shutdown afterwards to test/optimize/deploy in production scenarios

Thank you for your attention!

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

