
RNTuple Infrastructure
needed for production
workflows in ATLAS

Alaettin Serhan Mete
Argonne National Laboratory

RNTuple Format and Feature Assessment
6-7 November 2023

with inputs from
Peter Van Gemmeren (ANL), Marcin Nowak (BNL), Maciej Szymański (ANL)

Introduction
● Full production needs a lot more than reading/writing RNTuples
● The shopping list includes (but is not limited to):
○ Custom indexing (a la TTree::BuildIndex)
○ Fast Merging RNTuples
○ Having various utilities/tools to peek into, compare, validate, … RNTuples
○ Having the ability to optimize parameters for various use-cases
○ Having support for relational RNTuples (a.k.a. friendship)

● As in any such big migration, new hurdles will be uncovered
○ Therefore, having a close collaboration along the way is extremely crucial

● This talk will highlight some of these essential topics
○ Focus is given to those that need input/work beyond ATLAS/Athena
○ It would, nonetheless, be beneficial to share work/expertise across experiments if applicable

2

Custom Indexing (a la TTree::BuildIndex)
● A while ago we switched to building/using custom indices
○ Each tree has an additional branch, called index_ref, holding a unique id for each event
○ For each object the value of this index is stored in a token (along w/ the branch info. etc.)
○ When reading an object, we use this information through TTree’s custom index support
■ TTree::BuildIndex, TTree::GetEntryNumberWithIndex, etc.

● This functionality is essential for a number of use cases
○ Fast merging worker outputs in AthenaMP jobs with SharedWriter (more on this later on)
○ Cross-referencing event sample augmentation trees (more on this later on)

● The same functionality is also needed for RNTuple
○ In the current prototype we essentially use simple row indices
■ We have an associated field for index_ref but this is internally mapped to a plain index

3

Fast Merging (via TFileMerger)
● We use fast-merging primarily in the DAOD production jobs
○ These jobs execute in multi-process Athena (AthenaMP) w/ SharedWriter
■ Each worker produces its own in-memory output (via TMemFile)
■ This allows us to parallelize CPU intensive I/O operations such as compression
■ Then SharedWriter fast-merges the worker outputs into a single file
● Following parallelMergeServer/parallelMergeClient approach of ROOT

● This relies on ROOT’s ability to fast merge TTree/RNTuple
○ For now we cannot utilize this version of SharedWriter for RNTuple samples
○ SharedWriter also supports another, so-called, legacy mode that can handle RNTuples

● We have an ongoing effort w/ the core ROOT I/O team on this
○ A functional RNTupleMerger prototype is being iterated at root/pull/13858
○ It will definitely need a number of follow-up PRs to fully iron things out (hadd etc.)

4

https://github.com/root-project/root/pull/13858

Miscellaneous Topics
● We have a number of tools built around the TTree infrastructure
○ Peeking into in-file meta data (see Maciej’s talk) to configure the job based on the input file
○ Checking if two files are content-wise identical as far as event/meta data is concerned
○ Validating the output file at the end of the job to ensure there is no corruption
○ Summarizing the file content in terms of in-memory/disk-space sizes per container

● Some are inherently ATLAS specific but some can be shared
○ A good candidate is comparison of files, which is a crucial functionality for data processing
○ Another good candidate is validating against data corruption etc.

● Are there any plans within ROOT and/or can such an effort be
coordinated cross-experiment?
○ Such an effort can be coordinated elsewhere, e.g., HEP Software Foundation etc.

5

https://indico.cern.ch/event/1303499/#7-first-look-at-metadata-for-r

Miscellaneous Topics (cont’d)
● Support for various modes of operations: Athena(MP/MT)
○ Athena workflows support serial, multi-process, and multi-threaded modes
○ We also utilize ROOT’s IMT (both ROOT and Athena uses TBB, hence share thread pools)

● Recently discovered AthenaMT + ROOT IMT + RNTuple don’t get
along very well
○ Originally noticed in multi-threaded reconstruction jobs producing AODs w/ RNTuple
○ Traced back to the default buffered writing (likely compression, but to be followed-up)
○ Worked around (for now) with RNTupleWriteOptions::SetUseBufferedWrite(false)

● Different modes/workflows also have different conditions
○ For example, how we read input data: Linear vs semi-linear vs random event access etc.
○ Detailed studies w/ TTree were done that resulted in, e.g., root/pull/1065 from 2017
○ Needless to say, similar studies need to be performed for RNTuple, too

● Uncovering/debugging/fixing such issues rely on early testing
○ We shouldn’t overlook the importance of such subjects

6

https://github.com/root-project/root/pull/1065

Custom Optimizations for Different Use-cases
● Needless to say, not all data products are the same
○ For example, event size can vary a lot between up/down-stream data products

● Over the years we optimized these for the TTree
○ A prime example of this is the event clustering that can be tuned w/ TTree::AutoFlush
○ Such optimizations have implications on CPU/memory/disk-space usage, quite complex!

● How these would translate into RNTuple?
○ What would be the knobs we can turn etc.
○ We should have ample time to test the pre-production infrastructure well ahead of time

● I think this is another synergetic topic across all clients
○ Sharing expertise together w/ the guidance of the core ROOT I/O is very important

7

Event Sample Augmentation (a.k.a. friendship)
● In Run-3 we had a paradigm shift in the analysis model
○ Left Run-2’s many (skimmed) DAODs in favor or a single-ish (unskimmed) DAOD(_PHYS)
○ What happens if (many) analyses need (even a handful of) additional information in this format?
■ Option 1: Expand the common format w/ the new variables
● Wasteful because not all events need all variables unconditionally

■ Option 2: Copy the common variables + new variables in a new format (Run-2 Style)
● Wasteful because one replicates the (possibly large) common data unnecessarily

■ Option 3: Augment the main unskimmed data w/ skimmed variables (Event Sample Aug.)

8

See Peter’s CHEP talk

https://indico.jlab.org/event/459/contributions/11422/

Event Sample Augmentation (a.k.a. friendship)
● Prototype shows promising results in terms of disk-space
○ Augment unskimmed PHYS content w/ Long-Lived Particles (LLP) content
■ Increase the event size by 40%, for skim of 40% of the events
■ Run-2 Style Approach: 140% extra data for 40% of events → 56% more storage
■ Event Sample Augmentation: 40% extra data for 40% of events → 16% more storage

● TTree based implementation
○ Use a custom branch as the main index (via TTree::BuildIndex)
■ Synchronized across all trees and used to cross-reference events across trees

○ Athena has its own navigational structure to handle reading/writing
○ However, physics analyses software rely on the TTree friendship concept

● A similar functionality in RNTuple would be the ideal scenario
○ RPageSourceFriends is perhaps the way forward with this…

9

Conclusions & Outlook
● Adopting RNTuple in production needs a lot of work!
○ The effort goes well beyond just data model support (beyond ATLAS, too)

● We need a number of core functionality on the ROOT side
○ We highlighted a few of these in this talk, e.g., fast merging RNTuples, friend RNTuples etc.

● A number of tools are probably needed by all experiments
○ For example, diff-ing RNTuples for ensuring binary identicality of event/meta data etc.
○ Collaborating w/ other customers on these can be beneficial to all

● Core Athena support ≠ Everything is done
○ Physics analyses need to adopt the new technology as well, which needs time/effort

● Our overall goal/plan is to:
○ Address all open issues on the core Athena side by the end of Run-3, i.e., next ~1.5 years
○ Use much of the Long Shutdown afterwards to test/optimize/deploy in production scenarios

10

Thank you for your attention!

