

High Energy Physics Center for Computational Excellence HEP-CCE/IOS -> HEP-CCE2/SOP:

Future Plans: RNTuple

Peter van Gemmeren (ANL) for HEP-CCE

ROOT RNTuple Workshop

November 6, 2023

HEP-CCE

NATIONAL LABORATORY

CCE past: Input/Output and Storage Activities

Measuring performance of ROOT I/O in HEP workflows on HPC systems

HEP-CCE

• Darshan a scalable HPC I/O characterization tool has been enhanced (including fork safety) and used to monitor HEP production workflows.

Investigate HDF5 as intermediate event storage for HPC processing

- Relying on ROOT to serialize complex Event Data Model used in Simulation/Reconstruction workflows
- Implementing Collective Writing to avoid potential merge step
- Mimicking framework for understanding scalability and performance of HEP output methods
 - Experiment agnostic tool allows scaling I/O beyond what is currently accessible by production and has uncovered/fixed bottlenecks in ROOT and frameworks.

Brookhaven^{*} **Control** Fermilab

HPC friendly Data Model

• Together with PPS team started investigating efforts to make data model more suitable for offloading to accelerator and storage on HPC.

3

Case study: Access size

U.S. DEPARTMENT OF ENERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

I/O and Storage: Recommendations

Work of the HEP-CCE/IOS team has resulted in

- Worthwhile insight to I/O behavior of HEP workflows
 - Including on HPC and for scales beyond current production.
- Fixes/enhancements to common software and experiments frameworks
 - Darshan included fork-safety and better filtering for I/O.
 - ROOT serialization bottleneck was fixed.
 - Patch to resolve the Athena library issue on DSO loading hooks which cause PyRoot crash when running with Darshan
- Prototype development of new functionality in collaboration with experiments:
 - ATLAS developed functionality to store their production data in HDF5

HEP-CCE

Darshan Monitoring of different ATLAS workflow steps

Brookhaven^{*} **Fermilab**

HEP-CCE

HEP-CCE/IOS: STORAGE AND COMPRESSION Future Priorities

- The past cycle of HEP-CCE has been mainly focused on making HEP applications make [efficient] use of High Performance Computer
- This addresses the crucial need for CPU cycles expected for HEP experiment at the HL-LHC, DUNE and beyond.
- HEP, however, faces similar challenges for disk and tape storage, which also need to be addressed
 - Additional compute cycles may help, but won't solve this issue

HEP-CCE/IOS: STORAGE AND COMPRESSION

RNTuple, very brief, relevant experts are in the room.

- RNTuple part of ROOT7 has been implemented in ATLAS/CMS for most derived production analysis products
 - Promises significant storage savings and I/O speed up
 - Limited Data Model support vs. TTree
 - Streamlined design of RNTuple will require leaner approach than TTree

HEP-CCE Role:

- Adjustments to complex Simulation/Reconstruction Data Models
 - Development of techniques to hide complexity from persistence
 - Synergetic to HPC friendly data model work
 - Performance Testing and Optimization, e.g. using Darshan monitoring and I/O mimicking
- Consolidate requests for additional functionality to ROOT

Experiment status of RNTuple

ATLAS and CMS can store most derived analysis product in RNTuple

- Both experiments see very significant storage reductions
- Depending on:
 - Data Model/Data Product
 - Compression Algorithms
 - Storage Parameter
- Preliminary, numbers:
 - CMS nano-AOD: 30-40% reduction in file size
 - ATLAS DAOD-PHYS: 20-30% reduction in file size

On HL-LHC scale, these savings would correspond to ExaBytes of Disk and Tape

- Main contributors to space savings:
 - i. More compact representation of collections and bools
 - ii. Data encoding optimized for better compression ratio (byte-splitting, delta encoding, etc.)

HEP-CCE

Data Model support of RNTuple

Streamlined RNTuple, will not support full C++ data models (as TTree does)

• To achieve better performance than TTree, RNTuple design choices made it more streamlined and reduced support for very complex data model features.

Complex production data models will need redesign

- HEP-CCE will:
 - provide generalized templates and guidelines for developing data models that can be stored in RNTuple
 - This effort is synergistic with the design of HPC-friendly data model
 - identify possible limitations and coordinate areas of improvement for RNTuple while it is still in the experimental stage

Туре	Examples	EDM Coverage		RNTuple Status	
PoD	bool, int, float	Elat a tuplo	Reduced AOD	Full AOD / RECO	Available
Vector <pod></pod>	RVec <float></float>	Fiat II-tupie			Available
String	std::string				Available
Nested vector	RVec <rvec<float>></rvec<float>				Available
User-defined classes	"TEvent"				Available
User-defined collections	"TCudaVector"				Available
$\texttt{stdlib} \ \textbf{collections}$	<pre>std::map, std::tuple</pre>				Avail. / Testing
Variadic types	<pre>std::variant, std::unique_ptr</pre>				Avail. / Testing
Intra-event references	"&Electrons[7]"				In design
Low-precision floating points	<pre>Float16_t, Double32_t</pre>	Optimization benefitting all EDMs			Testing
	Custom precision and range				In design
	Precision cascades ACAT'22			In design	

HEP-CCE

Data model support by RNTuple.

Jakob Blomer, Philippe Canal, Axel Naumann, Javier Lopez-Gomez, Giovanna Lazzari Miotto, "ROOT's RNTuple I/O Subsystem: The Path to Production," CHEP, May 2023.

https://indico.jlab.org/event/459/contributions/11594/attachments/9389/13620/rntuple -chep23.pdf

Brookhaven **Fermilab**

This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, High Energy Physics Center for Computational Excellence (HEP-CCE). This research used resources at Argonne Leadership Computing Facility, NERSC and BNL Scientific Data and Computing Center.

