
Suggested line of text (optional):

WE START WITH YES.

Suggested line of text (optional):

WE START WITH YES.

SoA in RNTuple

AMIT BASHYAL for HEP-CCE
ARGONNE NATIONAL LABORATORY
November 7, 2023

November 7, 2023 1

HEP- Center for Computational Excellence
▪ Initiated in FY20

– Argonne, FNAL, LBNL and BNL
▪ Two main Motivations

– Major increase in expected HEP experimental data volumes
– Potential shortage of conventional HEP computing and storage resources to meet demand
– ASCR computing facilities as a potential solution

• HEP software stacks needs to be refactored accordingly

I/O and Storage Portability

Event Generators Complex Workflows

2

CCE and GPU Friendly Data Model
▪ CCE - I

– Storing HEP data in HPC friendly format (HDF5)
– Survey among experiments to understand efforts being made by

experiment to make their data GPU friendly
– Initiation of GPU Friendly Data Model Design based on survey findings

▪ CCE -2
– Continuation of GPU Friendly Data Model Design
– Storage in HDF5
– Storage in RNTuple (?)

3

Survey on GPU Friendly Data Model
▪ HEP-CCE conducted a survey among experiments to understand the efforts

made by experiments to make their data HPC friendly
▪ Common Challenges

– HEP data models are object oriented with complex data models
optimized for traditional computing workflow

– Design based on experimental needs and computational technology at
that time

▪ Common Solutions
– Utilization of Arrays, nested arrays, (Ao)SoA
– Experiments apply these common solutions according to their use case

and experimental needs

Black boxes represent
contiguous memory layout

4

https://github.com/hep-cce2/GPU-DM.git

CCE and GPU Friendly Data Model

5

● CCE-1
○ Developed techniques to store HEP data in HPC

friendly format like HDF5
■ Object oriented data stored as ROOT serialized

buffer
■ HPC friendly storage but not HPC friendly data

format
● CCE-2

○ Data model that can be stored in HPC friendly format +
Offloaded directly into HPCs (GPUs)

○ Simpler data models that can be stored in HDF5
without serialization

● CCE-2 AND RNTuple
○ RNTuple will also have limited support for data models
○ RNTuple will replace TTree as primary storage
○ Support for SoA would make RNTuple as the GPU

friendly storage format for HEP data

RNTuple

HPC Friendly
Data Products

(In Memory)

HDF5
Format

Write

GPU
Offlo

ad

O
ffload

Write

RNTuple in Run IV and Beyond
▪ RNTuple will replace TTree as the primary storage mode
▪ HPCs (GPUs) will have larger role in HEP computing
▪ Need for HPC friendly storage format

– See Snowmass White paper for more info (Link)
▪ Support for GPU friendly data model in RNTuple in the era of HPCs

▪ RNTuple is better suited for SoA data model design
– Supports simpler data types
– Columnar Data storage
– Column-wise storage layout → Selective reading of event attributes

6

https://arxiv.org/pdf/2203.07885.pdf

SoA in CMS (Matti’s Talk)

7

https://indico.cern.ch/event/1303499/contributions/5646236/attachments/2746277/4778856/20231106-RNTupleWorkshop_CMS.pdf

Use Case - (CAF)
▪ Neutrino Experiments (DUNE,

NOvA, MicroBooNE etc)
– Common Analysis Format

(CAF)
– Columnar Data Model with

multiple level of hierarchies
and segmentations

– Data written in HDF5 to utilize
MPI based parallel I/O

▪ Can RNTuple be used to Store
CAF data?
– Ao(SoA) to support (?)

8

https://github.com/physnerds/GPU-DM/blob/main/NOvA_talk.pdf

GPU Friendly Data Models and SoA
▪ SoA design by itself does not make data GPU friendly
▪ I/O requirements for efficient utilization of the GPU resources

– Contiguous memory layout (RNTuple supports this design)
– Minimum data transfer between host and device for maximum

computation to reduce I/O bottleneck
– Parallel (Batch) Processing of data

• MPI support? (Showed MPI support for TTree)
– Data Alignment

• Padded type (See CMS design)
• Compact type (for sparse data?)

– Chunking (HDF5)?
• Selective I/O in chunks for large data-sets (DUNE?)

– Other things…..

9

https://github.com/physnerds/GPU-DM/blob/main/CMS_talk.pdf

SoA Studies in RNTuple
▪ My Preliminary efforts to explore RNTuple as a SoA storage format

– Part of CCE-2 Efforts
– DUNE Trigger level data as a base Data model
– Design SoA roughly based on CMS Patatrack
– Store Data in HDF5/RNTuple
– Offload to GPU/CPU
– Use Darshan to profile I/O (see backup slides)

10

https://www.mcs.anl.gov/research/projects/darshan/

ProtoDUNE Trigger Data Model Description
 "file_layout_parameters":{
 "trigger_record_name_prefix": "TriggerRecord",
 "digits_for_trigger_number": 6,
 "digits_for_sequence_number": 0,
 "trigger_record_header_dataset_name": "TriggerRecordHeader",

 "path_param_list":[{"detector_group_type":"TPC",
 "detector_group_name":"TPC",
 "region_name_prefix":"APA",
 "digits_for_region_number":3,
 "element_name_prefix":"Link",
 "digits_for_element_number":2},
 {"detector_group_type":"PDS",
 "detector_group_name":"PDS",
 "region_name_prefix":"Region",
 "digits_for_region_number":3,
 "element_name_prefix":"Element",
 "digits_for_element_number":2}]
 }

● Proto DUNE writes data in HDF5
● Data Structures

○ File Attributes as Metadata
○ Data: Trigger Record (Group)
○ Groups also have attributes
○ Raw Data as WIB

■ Stored as HDF5 Data Sets
○ Other Hardware related

information

DUNE’s Trigger Level Data is persisted in HDF5.

11

See Kirby’s Talk for more detail

https://indico.cern.ch/event/1303499/contributions/5648911/attachments/2746730/4779546/DUNE_RNTuple_discussion_and_feedback_6Nov2023.pdf

Constructing SoA

12

 Generate_Arrays(soa_trigger,
 //metadata… (not yet implemented)

 AddArray(uint32_t, wib0,arr_size);
 AddArray(uint32_t, wib1,arr_size);
 AddArray(uint32_t, wib2,arr_size);

 ….
 AddScalar(uint32_t, trig_cand);
 …..

);

struct soa_simple{
uint32_t wib0[arr_size];
uint32_t wib1[arr_size];
...
..
uint32_t trig_cand;
...
};

 Generate_Arrays(soa_trigvec,
 Addvector(uint32_t, wib0);
 Addvector(uint32_t, wib1);

 Addvector(uint32_t, wib2);
 Addvector(uint32_t,wib3);
 //and other stuff
); Or Write into vectors

<lcgdict>
 <class name="soa::DUNETriggerData" />
 <class name="soa::DUNETriggerData::soa_trigger" />
<class name="soa::DUNETriggerData::soa_trigvec" >
</class>
</lcgdict>

To Generate Dictionary

Persisting SoA in RNTuple
▪ Persisting Simple type arrays

– RNTuple (Only supports ROOT VERSION >6.26)
– This work done with 6.26
– Written with 4 threads (easier implementation)

Simple Type arrays stored as (std::array<T,size>)

13

************************************ NTUPLE ************************************
* N-Tuple : NTuple *
* Entries : 4 *
**
* Field 1 : Trig0 (soa::DUNETriggerData::soa_trigger) *
* Field 1.1 : wib0 (std::array<std::uint32_t,50000>) *
* Field 1.1.1 : std::uint32_t (std::uint32_t) *
* Field 1.2 : wib1 (std::array<std::uint32_t,50000>) *
* Field 1.2.1 : std::uint32_t (std::uint32_t) *
* Field 1.3 : wib2 (std::array<std::uint32_t,50000>) *
* Field 1.3.1 : std::uint32_t (std::uint32_t) *
* Field 1.4 : wib3 (std::array<std::uint32_t,50000>) *

* Field 1.4.1 : std::uint32_t (std::uint32_t)

Output from
RNTupleReader::PrintInfo()

SoA array types with vector types

14

************************************ NTUPLE ************************************
* N-Tuple : NTuple *
* Entries : 4 *
**
* Field 1 : Trig0 (soa::DUNETriggerData::soa_trigvec) *
* Field 1.1 : wib0 (std::vector<std::uint32_t>) *
* Field 1.1.1 : _0 (std::uint32_t) *
* Field 1.2 : wib1 (std::vector<std::uint32_t>) *
* Field 1.2.1 : _0 (std::uint32_t) *
* Field 1.3 : wib2 (std::vector<std::uint32_t>) *
* Field 1.3.1 : _0 (std::uint32_t) *
* Field 1.4 : wib3 (std::vector<std::uint32_t>) *
* Field 1.4.1 : _0 (std::uint32_t)

Output from
RNTupleReader::PrintInfo()

auto _val =

entries[i]->Get<DUNETriggerData::soa_trigvec>("Trig0"

);

for(int j=0;j<arr_size;j++){

Double_t arr[10];

prng->RndmArray(10,arr);

uint32_t v0 = uint32_t(arr[0]*10);

uint32_t v1 = uint32_t(arr[1]*10);

_val->wib0.emplace_back(v0);

_val->wib1.emplace_back(v1);

Memory Layout in RNTuple
struct soa{

std::vector<uint32_t>wib0;
std::vector<uint32_t>wib1;
std::vector<uint32_t>wib2;
std::vector<uint32_t>wib3;
//More stuff....
//Meta data related stuff...

};

 wib0 wib1 wib2 wib3

 wib0[0] wib0[1] wib0[n]……………...

 wib1[0] wib1[1] wib1[n]……………...

 wib2[0] wib2[1] wib2[n]……………...

15

Variables With Padding
Create a custom class for a 128 byte alignment.
 template<typename T, int bytealignment=128, int offset = bytealignment-sizeof(T)%bytealignment>
 class myval{
 public:
 myval():_val(NULL){}
 myval(const T& init_val):_val(init_val){
 };
 ~myval(){};
 // OTHER STUFF
 private:
 char pad[offset];
 T _val;
};

16

Fix the alignment at
128 bytes by default

Padding for extra space.

 SOA_HOST_DEVICE_INLINE myval<T>&
operator=(const T& v){
 _val = v;
 return *this;
 }

Operator overloading to assign values.

Persisting SoA with Padded variable is having
issues…

Complains does not know “myval” type

Outlook
▪ GPU Friendly data model design : One of the work area of CCE-2
▪ SoA as one of the data model candidates (based on CMS work)

– Based on Survey result
▪ SoA in RNTuple and HDF5

– RNTuple as a storage system for HEP data in the HPC era
– Darshan to profile I/O
– Data model should be offloaded in GPU directly
– Common enough to be followed by all HEP experiments
– Design motivated by the survey done in CCE-1

17

Suggested line of text (optional):

WE START WITH YES.

Suggested line of text (optional):

WE START WITH YES.

BACKUP

18

Structure of Arrays

19

SoA array types with Vectors
for(int i=0;i<NWriterThreads;i++){

threads.emplace_back([i,&entries,&ntuple](){

static std::mutex gLock;

auto prng = std::make_unique<TRandom3>();

prng->SetSeed();

//DUNETrigger::soa_trigvec d_trigvec;

auto _val = entries[i]->Get<DUNETriggerData::soa_trigvec>("Trig0");

for(int j=0;j<arr_size;j++){

Double_t arr[10];

prng->RndmArray(10,arr);

uint32_t v0 = uint32_t(arr[0]*10);

uint32_t v1 = uint32_t(arr[1]*10);

_val->wib0.emplace_back(v0);

_val->wib1.emplace_back(v1);

20

_val->wib2.emplace_back(uint32_t(arr[2])*10);

_val->wib3.emplace_back(uint32_t(arr[3])*10);

This wont work btw…

struct soa_trigvec{
 std::vector<uint32_t>wib0;
 std::vector<uint32_t>wib1;
 std::vector<uint32_t>wib2;
 /*
 All the way upto wib9;
 And 3 more information related to
metadata and hardware inference
*/

 uint32_t trig_scalar;

};

POSIX

21

RNTuple
TTree

POSIX

22

RNTuple
TTree

STDIO : Note Very different Scales

23

RNTuple
TTree

POSIX (TOP) and STDIO OVER-VIEW (BOTTOM)

24

RNTuple TTree

