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WHO AM I?                        WHY AM I HERE?
§ I’m a computer scientist with a 

background in HPC storage, I/O, 
and communication (MPI)
https://www.mcs.anl.gov/research/projects/mochi/
https://www.mcs.anl.gov/research/projects/darshan/
https://parallel-netcdf.github.io/

§ I lead a team of computer scientists 
and AI/ML experts helping DOE 
scientists use HPC resources
http://rapids-scidac.org

§ I’m co-leading storage-related 
activities with Peter VG in HEP-CCE
https://www.anl.gov/hep-cce
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§ Gain a better understanding of HEP 
workflows, how HPC might play a 
role, where computer science 
challenges lie

§ Learn personalities, organizations, 
and terminologies J

§ Help align potential HEP-CCE 
activities with ROOT, RNTuple, and 
experiment efforts

§ Serve as a resource for HPC I/O 
knowledge/tools

https://www.mcs.anl.gov/research/projects/mochi/
https://www.mcs.anl.gov/research/projects/darshan/
https://parallel-netcdf.github.io/
http://rapids-scidac.org/
https://www.anl.gov/hep-cce


WHAT’S DARSHAN AND WHY SHOULD I CARE?



WHAT’S DARSHAN?
§ Darshan is a scalable HPC I/O 

characterization tool. It captures a 
concise picture of application I/O 
behavior with minimal overhead.

§ Deployed at DOE supercomputing 
sites (ALCF, OLCF, and NERSC) 

§ No changes to code or development 
process
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Figure courtesy Jakob Luettgau (UTK)

§ Negligible performance impact: just “leave it on”
§ Includes counters, timers, histograms, etc.
§ We routinely learn things about application I/O behavior using Darshan.

https://www.mcs.anl.gov/research/projects/darshan/

https://www.mcs.anl.gov/research/projects/darshan/


DARSHAN ANALYSIS TOOLS

§ Tools and interfaces to inspect and 
interpret log data
– PyDarshan command line utilities 

like the new job summary tool
– Python APIs for usage in custom 

tools, Jupyter notebooks, etc.
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Figure courtesy Jakob Luettgau (UTK)



OBJECTS, DAOS, ROOT (RNTUPLE), AND 
DARSHAN



OBJECT STORAGE: WHAT IS IT?
§ “Object storage” is a term used to describe a 

collection of storage technologies that focus 
on the ability to store, reference, and access 
large collections of unstructured data

§ Unlike a file system, how you find things is 
generally handled separately (e.g., via DB)

§ There are lots of flavors of object storage 
being used today in different contexts:
– Cloud storage (e.g., S3): large, immutable 

objects, HTTP access
– Distributed filesystems (e.g., RADOS): 

large, mutable and byte-addressable 
objects with file system access (i.e., 
Ceph)

– HPC storage (e.g., DAOS): semi-
structured, mutable, byte-addressable 
objects with key/value access https://www.scaleway.com/en/blog/understanding-the-different-types-of-storage/
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https://www.scaleway.com/en/blog/understanding-the-different-types-of-storage/


STORING ROOT DATA IN OBJECTS
§ Numerous potential advantages for 

using in HEP:
– Allow fine-grained versioning, 

avoiding replication of 
unchanged objects

– Facilitate user-driven data 
augmentation, to subset of 
events

– These methods of referencing 
save storage space

§ Object storage activities on HPC 
side as well
– DAOS
– HDF5 over objects
– Data lakes for AI applications

The FNAL team is investigating mapping CMS datasets into Ceph objects. The 
approach is not specific to Ceph, although different mappings might be more 
advantageous on specific underlying technologies.

Bo Jayatilaka, Christopher Jones, Nicholas Smith, “Using CEPH Object store with 
ROOT serialization in CMS”, December 2022.
https://indico.fnal.gov/event/57189/contributions/254706/attachments/162368/214598/n
csmith-uscms-objectstoresQ4.pdf
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https://indico.fnal.gov/event/57189/contributions/254706/attachments/162368/214598/ncsmith-uscms-objectstoresQ4.pdf
https://indico.fnal.gov/event/57189/contributions/254706/attachments/162368/214598/ncsmith-uscms-objectstoresQ4.pdf


DISTRIBUTED ASYNCHRONOUS OBJECT 
STORAGE (DAOS)
§ DAOS is an object storage service 

developed for use on persistent memory 
technologies as a very high performance 
online storage layer

§ Data model includes both key:value 
objects and array objects

§ Array objects can be used to streamline 
storage of large multidimensional arrays 
with record addressability

§ Access can be via POSIX or directly via 
custom API
– Custom API, array objects, striping all 

provide opportunities for optimization 
beyond a “standard” object store

Example of keys and references employed in a DAOS volume. Array objects 
preserve record addressability that is incredibly valuable in many HPC contexts 
(e.g., HDF5 arrays).

Zhen Liang, Johann Lombardi, Mohamad Chaarawi, Michael Hennecke,”DAOS: 
A Scale-Out High Performance Storage Stack for Storage Class Memory,” June 
2020.
https://doi.org/10.1007/978-3-030-48842-0_3
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https://link.springer.com/chapter/10.1007/978-3-030-48842-0_3
https://link.springer.com/chapter/10.1007/978-3-030-48842-0_3
https://link.springer.com/chapter/10.1007/978-3-030-48842-0_3
https://link.springer.com/chapter/10.1007/978-3-030-48842-0_3
https://link.springer.com/chapter/10.1007/978-3-030-48842-0_3
https://doi.org/10.1007/978-3-030-48842-0_3


OBJECT STORES, DAOS, AND RNTUPLE
§ HEP-CCE will study RNTuple DAOS 

implementation using Darshan

§ Darshan already provides initial support 
for characterizing DAOS storage access

§ IOS has successfully used Darshan for 
current HEP workflows using ROOT

§ Aligns with, and will benefit from, other 
activities to understand and tune DAOS 
use by team members

§ We will look at how to incorporate 
TTPerfStats and RNTuple performance 
data into analysis!
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A variety of user APIs have already been 
developed for using DAOS from applications, 
including POSIX, HDF5, and ROOT. 

Zhen Liang, Johann Lombardi, Mohamad 
Chaarawi, Michael Hennecke,”DAOS: A Scale-
Out High Performance Storage Stack for 
Storage Class Memory,” June 2020.
https://doi.org/10.1007/978-3-030-48842-0_3

https://link.springer.com/chapter/10.1007/978-3-030-48842-0_3
https://link.springer.com/chapter/10.1007/978-3-030-48842-0_3
https://link.springer.com/chapter/10.1007/978-3-030-48842-0_3
https://link.springer.com/chapter/10.1007/978-3-030-48842-0_3
https://link.springer.com/chapter/10.1007/978-3-030-48842-0_3
https://doi.org/10.1007/978-3-030-48842-0_3


BONUS: A BIT ABOUT HPC I/O



Argonne Leadership Computing Facility5

Aurora
Argonne’s upcoming exascale 
supercomputer will leverage 
several technological 
innovations to support machine 
learning and data science 
workloads alongside traditional 
modeling and simulation runs.

≥2 Exaflop DP
PEAK PERFORMANCE

Data Center GPU Max Series
Intel® Xe ARCHITECTURE-BASED GPU

Intel Xeon CPU Max Series
INTEL® XEON® SCALABLE PROCESSOR

HPE Cray EX
PLATFORM

Compute Node
2 Intel® Xeon® CPU Max Series processors; 6 
Intel® Data Center GPU Max Series 
GPUs; Unified Memory Architecture; 8
fabric endpoints; RAMBO

GPU Architecture
Intel® Data Center GPU Max Series; Tile-
based chiplets, HBM stack,
Foveros 3D integration, 7nm

CPU-GPU Interconnect
CPU-GPU: PCIe
GPU-GPU: Xe Link

System Interconnect
HPE Slingshot; Dragonfly
topology with adaptive routing

Network Switch
25.6 Tb/s per switch, from 64–200 Gbs
ports (25 GB/s per direction)

High-Performance Storage
≥230 PB, ≥25 TB/s (DAOS)

Programming Models
Intel oneAPI, MPI, OpenMP, C/C++,
Fortran, SYCL/DPC++

Node Performance
>130 TF

System Size
>10,000 nodes

“Up to 56 
cores”

From K. Riley, SciDAC PI Meeting, Sept. 2023
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Frontier Overview             Built by HPE         Powered by AMD
Olympus rack 
• 128 AMD nodes
• 8,000 lbs
• Supports 400 KW

Compute blade
• 2 AMD nodes

AMD node
• 1 AMD “Trento” CPU 
• 4 AMD MI250X GPUs 
• 512 GiB DDR4 memory on CPU
• 512 GiB HBM2e total per node

(128 GiB HBM per GPU)
• Coherent memory across the node
• 4 TB NVM
• Infinity Fabric fully connects GPUs & CPU
• 4 Cassini NICs connected to the 4 GPUs 

System
• 2 EF Peak DP FLOPS
• 74 compute racks 
• 29 MW Peak Power

(5 MW idle/ 18 MW average)
• 9,472 nodes
• 9.2 PB memory 

(4.6 PB HBM, 4.6 PB DDR4)
• Cray Slingshot network with 

dragonfly topology
• 37 PB Node Local Storage
• 716 PB File storage
• 4,000 ft2 foot print 

All water cooled, even DIMMS and NICs

Extraordinary Engineering
“64 cores”

From A. Geist, SciDAC PI Meeting, Sept. 2023
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Orion Tiered Architecture
• Capacity Tier: 

• 679 PB
• RD/WR: 5.5/4.6 TB/s
• 47,700 18 TB HDD

• Performance Tier: 
• 11.5 PB
• RD/WR: 10 TB/s
• 5,400 3.2 TB NVMe

• Metadata Tier: 
• 10 PB
• RD/WR: 0.8/0.4 TB/s
• 480 30.7 TB NVMe OSS

OSS
SSU

I/O Scalable Unit

x45

x5

MDU
MDS

x4 Orion Metadata Tier 
(40 MDS, 1 MDT per MDS)

Orion Capacity & 
Performance Tiers

(450 OSS, 1 Perf. OST and
2 Cap. OSTs per OSS)

MDS

Frontier 
Node

x9408

XFS Compute Node-Local Tier

7.3 TB/s to each I/O Scalable Unit via Slingshot 
(36.5 TB/s aggregate, max 100GB/s per node)

NVMe-based

HDD-based

From M. Brim, ATPESC, Aug. 2023
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Pre-Production Application I/O Performance on Orion

• Default progressive file layout is good for file-per-process
– WarpX (ADIOS) - File-per-process @ 4,096 nodes (32k processes, 1.5 

GiB/process) achieved ~7.9 TiB/sec for simulation output writing
– GTC (ADIOS) - File-per-process @ 2,048 nodes (16k processes, 2 

GiB/process) achieved ~5.2 TiB/sec for checkpointing three datasets

• But not so great for large single-shared-file
– Flash-X (HDF5) - Shared-file @ 512 nodes (28k processes, 29 GiB/node) 

got only 6 GiB/sec
• Using Capacity tier only with wide-striping improved this by 20x

From M. Brim, ATPESC, Aug. 2023



Graphic from J. Tannahill, LLNL

Typical simulations divide 
up the region being 
simulated into chunks, 
then group those chunks 
into similar amounts of 
work.

These regions are then 
distributed to cores 
(columns) on nodes 
(grey boxes) for 
computation.

When speed of 
writing is the 
priority, blobs of 
data are written 
from each node 
into individual files 
that must usually 
be post-processed 
for analysis.

E.g., HDF5 Log 
VOL and ADIOS.

To prepare data for 
analysis, a code 
can write in a 
canonical view by 
processing the data 
while it is in 
memory, resulting 
in a better 
organized dataset. 

E.g., Traditional use 
of netCDF.

or



COMPARING I/O STRATEGIES
§ For traditional “canonical” output into a 

netCDF format, PnetCDF is substantially 
faster than NetCDF4

§ ”Blob” formats are faster for writing, 
especially for large numbers of time steps
– Directly writing into HDF5 with 

DataLib HDF5 Log VOL retains 
advantages of HDF5 ecosystem 
while achieving best in class 
performance

§ Who could use our HDF5 Log VOL?
– Any HDF5 user could switch to our 

plug-in with no code changes.
– Accelerated HDF5 opens up HDF5 use 

to teams who have found performance 
inadequate in the past.

– Note that the HDF5 Log VOL cannot 
solve the NetCDF4 API problems!

E3SM production run case study performed on Cori @ NERSC:
- Case F: 1/4 degree, 28 KM global res., 25 time steps
- Case G:  1/8 degree, 18 to 6 KM global res., 1 time step
- Case I: 1/2 degree, 25 KM global res., 240 time steps

Cori @ NERSC NetCDF4 
(on HDF5) PnetCDF HDF5 

Log VOL ADIOS

Canonical Blob

C
as

e 
F

# MPI processes 21600 on 258 nodes
# sub-files 1 258
Write amount in GiB 21.3
# write flushes 25 1 1
End-to-end time 
(sec) > 3600 (!) 11.64 5.01 4.62

C
as

e 
G

# MPI processes 9600 on 115 nodes
# sub-files 1 115
Write amount in GiB 80.0
# write flushes 1 1 1
End-to-end time 
(sec) 20.04 1.55 3.16

C
as

e 
I

# MPI processes 1344 on 16 nodes
# sub-files 1 1 16 32
Write amount in GiB 86.1
# write flushes 240 1 1
End-to-end time 
(sec) 217.06 24.53 37.40



AVOIDING LOCK CONTENTION
§ To avoid lock contention when writing to a shared file, we can 

reorganize data between processes
§ Two-phase I/O splits I/O into a data reorganization phase and an interaction 

with the storage system (two-phase write depicted):
– Data exchanged between processes to match file layout

Phase 1: Data are exchanged between 
processes based on organization of data 
in file.

Phase 2: Data are written to file (storage 
servers) with large writes, no contention.



TWO-PHASE I/O ALGORITHMS

20For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective 
I/O Based on Underlying Parallel File System Locking Protocols,” SC2008, November 2008.



Improving I/O in the Sherpa and Pythia event generators (HEP)
With the HEP-ASCR Partnership (program) – if applicable

21

Scientific Achievement
Experiments at the Large Hadron Collider 
generate complex final states that must 
be simulated at high precision to identify 
the physics principles which determine 
how subatomic particles interact. Current 
simulations are too complex to achieve 
the precision goals set for the 2030s.
We improved performance and scalability.

Significance and Impact
An I/O bottleneck limited the number of particle collisions we could simulate.    
It also broke strong scaling in parallel computations. By dramatically reducing 
the I/O overhead, we can now carry out the Monte-Carlo integration with a 
greater number of events. This reduces the statistical uncertainty of the 
simulations, and leads to theoretical predictions with higher confidence level. 

I/O cost as the simulation scaled up alarmed scientists and prevented running 
higher resolution experiments.  By enabling HDF5 collective data and metadata 
optimizations, and by making a minor adjustment to the arrangement of variables 
in the HDF5 file, the simulation could create HDF5 files significantly faster and 
simulate more events.

Technical Approach
• Modified support libraries to expose collective HDF5 operations
• Adjusted use of HDF5 to allow further collective I/O optimizations
• Off-line converter to work around one HDF5 performance bug
• No machine-specific tuning required:  can use this approach on any parallel 

file system

Initial I/O approach
After optimization: I/O time 
reduced to barely 
measurable;  overall runtime 
reduced by 34%

Computing time projections, ATLAS experiment



BONUS #2: AN EXPERIMENT WITH
DATA SERVICES IN HPC



ACCELERATING ANALYSIS 
ON AN HPC PLATFORM
§ What if we custom-built a data service for 

an experimental data analysis workflow?
– NOvA in this case

§ Bulk ingest the entire dataset (to be analyzed) 
upfront into a scalable service
– 17,878,347 candidate interactions (slices)
– 1.1% of 2018 analysis size
– Loaded four copies for experiment shown

§ Run analysis across many compute nodes
– 8:1 ratio of computing to service nodes

§ Allow intermediate data products to be 
dropped into this service also
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HEPnOS: a Specialized Data Service
for High Energy Physics Analysis

Sajid Ali‡, Steven Calvez†, Philip Carns∗, Matthieu Dorier∗, Pengfei Ding‡, James Kowalkowski‡,
Robert Latham∗, Andrew Norman‡, Marc Paterno‡, Robert Ross∗, Saba Sehrish‡, Shane Snyder∗,

and Jerome Soumagne§
∗Argonne National Laboratory, Lemont, IL, USA – {mdorier,carns,robl,rross,ssnyder}@mcs.anl.gov

†Colorado State University, Fort Collins, CO, USA – steven.calvez@colostate.edu
‡Fermi National Laboratory, Batavia, IL, USA – {sasyed,dingpf,anorman,jbk,paterno,ssehrish}@fnal.gov

§Intel Corporation, Santa Clara, CA, USA – jerome.soumagne@intel.com

Abstract—In this paper, we present HEPnOS, a distributed data
service for managing data produced by high-energy physics (HEP)
experiments. Using HEPnOS, HEP applications can use HPC
resources more efficiently than traditional file-based applications.
The file-based model leads to a rigid, chunk-based allocation
of computational resources and limits the number of cores
that can be used concurrently by an HEP application. The
fundamental problem is that organizing domain-specific data into
files inadvertently introduces a single, artificial, conflated tuning
parameter that puts key optimization goals into conflict: larger file
sizes reduce metadata overhead and thus improve I/O efficiency,
but smaller file sizes provide more opportunity for workflow
parallelism and load balancing. In this work, we introduce a
domain-specific data service that decouples that constraint so that
data can be accessed and processed in its natural granularity
while still maintaining I/O efficiency. By removing the constraints
introduced by file handling we are able to obtain better scaling
and make efficient use of more cores for processing a fixed-sized
data sample. We demonstrate the improved scalability by using an
application developed in the file-based paradigm and comparing
it to a version modified to use HEPnOS.

Index Terms—HPC, Storage, Mochi

I. INTRODUCTION

The design of most High Energy Physics (HEP) applications
and workflows is influenced by the grid-based high-throughput
computing and storage facilities that have traditionally been
used in the field. The typical HEP workflow needed to complete
a data processing campaign is broken into several distinct steps,
each performed by the invocation of a different application.1

An HEP workflow running on grid compute nodes uses files
both as the storage technique and to exchange data between
successive processing steps. Because the file written as output
by step n is read as input by step n+ 1, it is common for a
step to “copy forward” data from its input file to its output
file if those data are needed by later steps. This is the case
even when those data are needed only by a possibly much
later step and not by the step doing the copying forward.
Important workflows typically generate thousands to hundreds
of thousands of files. These files can range in size from a few
megabytes to tens of gigabytes. The file size is chosen based on
constraints imposed by the grid processing systems, including

1Often these applications are configurations of a common framework.

the maximum processing time allowable on grid nodes and
the size requirements for archival storage, and the size and
organization of the experimental data stream originating from
the scientific detector systems. File handling features present
within experiments’ data acquisition systems, often impose
stringent constraints on file size due to limited file buffering
and near real-time operational requirements. These sizes and
organizations often percolate through to the higher levels of
grid processing even though the original real-time and hardware
constraints are nolonger present.

In this manner, the file is the atomic unit of processing for the
grid-oriented systems. This unit of dicretization is however in
a sense artificial. It is not a reflection of any unit of processing
inherent in the scientific (physics) content of the experiment
data2. The natural atomic unit of data for the representation of
subatomic interactions with nuclear fields in the experiments
is denoted as the event. An event represents a single readout
of a full detector covering a window of time that is of interest,
typically identified by the experimental apparatus as a potential
subatomic interaction. Events are discrete and atomic in the
sense that each event is assumed to be causally disconnected
from each other event and representative of an independent
trial of the measurement or hypothesis. Under this formal
assumption, each event can be processed independently and in
any order with respect to each other event without inducing
measurement bias. A traditional file can contain any number
of events, from a few tens of events to tens of thousands
of events, but typically contains events that were acquired
over a macroscopic time scale of a few minutes to hours of
experimental detector operations.

Large analysis tasks are run as batch jobs on distributed grid
resources. Batch jobs typically consist of tens to thousands of
concurrent processes, distributed over the grid resources. In
the traditional design, each process works on a series of files;
no two processes work on the same file in order to minimize
redundancy in IO transfers between the storage system and the
compute elements. To support parallelism between jobs, the
files are delivered by a data handling system that allows the

2Information regarding physical calibrations of the instruments is associated
with the file structure but does not drive its organization

FERMILAB-CONF-23-035-CSAID

https://lss.fnal.gov/archive/2023/conf/fermilab-conf-23-035-csaid.pdf

https://lss.fnal.gov/archive/2023/conf/fermilab-conf-23-035-csaid.pdf


HEPNOS

§ Data loaded from HDF files in parallel (i.e., MPI program), written in batches from 
MPI ranks

§ Analysis (client application) is an MPI code (for coordination) calling CAFAna for 
analysis
– Mapping of events to MPI ranks done dynamically (work queues) in HEPnOS
– Data loaded in 16K event batches (i.e., not per-event iteration!) from service, 

kept in C++ data structures to reduce serialization/deserialization
– Handed out on the node in 64-event batches for processing24

Client Application

Boost Serialization HEPnOS Client API

Yokan Client API

Margo

Mercury
(RPC/RDMA)

Argobots
(multithreading)

Network
 (OFI, UCX,...) CPUs

Yokan Provider
(key/value storage) Bedrock Provider

(bootstrapping) 

Margo

Mercury
(RPC/RDMA)

Argobots
(multithreading)

Database library (leveldb,
rocksdb, berkeleydb, etc.)

Network
 (OFI, UCX,...) 

Local storage
(DRAM, SSD, etc.)

CPUs

config

Core Mochi libraries Mochi components External libraries HEPnOS library

Fig. 1. Architecture of HEPnOS. HEPnOS is built upon the Mochi suite of building blocks including Margo, which provides Argobots-aware wrappers for
Mercury RPC routines and Yokan, which is a key-value store that can use a variety of backends.

2) Product keys and values: To uniquely identify a
product, its key is built by concatenating the key of
its container with the label and the type of the data
product, separated by a #. For example <DatasetA
UUID><0001><0001><0004>mylabel#Particle is
the key (shortened for space constraints) to a Particle object
with label mylabel in DataSetA, run 1, subrun 1, event 4. The
value associated with such a key is a serialized version of the
C++ object.

3) Placement and iteration: One challenge in our design was
to place container keys in such a way that we could iterate easily
through datasets, runs, subruns, and events. By relying on con-
sistent hashing of the full key for placement, listing the elements
of a container would have required interrogating all the servers
and merge their results. Instead, HEPnOS carefully places the
keys on servers so that iterating over the elements of a container
only involves using the iterator functionalities of one database.
For this, we select the location of a particular container key by
hashing its parent’s key. For instance the location for the subrun
key </fermilab/nova/><33><42> is selected through
consistent hashing of the key </fermilab/nova/><33>.
Because keys are sorted lexicographically inside a database
and numbers are converted to big-endian, this strategy ensures
that (1) all subcontainers directly inside a given container are
located in the same database instance, and (2) they are sorted
alphabetically for datasets and in ascending order for runs,
subruns, and events.

HEPnOS does not enable iterating over products because that
is not a relevant usage pattern for applications. The location
of a product is determined by the consistent hashing of its
parent container key. We chose this method as it allows reading
products in batches when accessing multiple products from the
same container.
Such a placement strategy is in line with the way HEP

workflows operate: individual tasks of the workflow will
generally process events in distinct subruns, hence distributing
the load when iterating over events. The way products are
distributed also ensures some load balancing both in terms of
the amount of data stored, and in accesses.

D. Batching, asynchronous accesses, and load balancing

To improve performance when accessing many small data
items, HEPnOS provides batching and asynchronous access
capabilities. A WriteBatch object can be passed to func-
tions that create containers or store objects. This object will
accumulate the updates in a local buffer, group them by target
database (since not all updates target the same database) and
send batch updates upon destruction.
An AsynchronousWriteBatch object can be used to

issue RPCs in the background and ensure that all the updates
are completed when its destructor is called.
For reading, a ParallelEventProcessor object pro-

vides a high-level interface for a group of processes to iterate
over the events in a given dataset in parallel and in a load-
balanced manner. This interface takes a callable object (which
can be provided by a lambda expression) that will be invoked
on each event. The interface handles loading and distributing
events across participants. It does so by designating a subset
of processes as readers (typically as many readers as databases
to read from). Readers load batches of events from HEPnOS
in the background and place them in a distributed queue from
which all processes pull. The ParallelEventProcessor
object also takes care of prefetching products associated with
an event if requested by the program.

§ Treat data analysis as a large 
HPC job

§ Leverage HPC network
§ Use all on-node resources for 

analysis (64 cores, KNL)



RESULTS SNAPSHOT
§ With the in-memory backend the 

HEPnOS based workflow achieves 85% 
strong scaling efficiency at 128 nodes 
(8K cores) comparing to 1 node.

§ Had to load in large batches to get these 
results.

§ Ignore the “File-based” results for today
§ Three configurations
– Map tests use memory
– RocksDB tests use local SSD
– File tests read from HDF files 

(probably ignore for this discussion)

25

in crashes caused by failures apparently due to oversaturation of
the injection bandwidth of the Aries NIC [15]. This prevented
the re-use of servers between runs, thereby causing us to setup
and shutdown a server instance for each run. 7 Figure 2 shows
the throughput we measured as a function of the number of
nodes used in the processing.

16 32 64 128 256
Number of nodes

10
5

10
6

Th
ro

ug
hp

ut
 in

 s
lic

es
/s

ec

Dataset size: 7716 files

analysis method
HEPnOS-map
HEPnOS-rocksdb
File-based workflow

Fig. 2. Plot illustrating the throughput (in slices processed per second) as
a function of the total number of nodes used for processing the data using
the existing traditional workflow and the HEPnOS based workflows. The
performance of the HEPnOS based workflow is superior across all the different
number of nodes used. The dots have been jittered to reduce over-plotting.

The figure shows that HEPnOS, whether using the in-memory
and RocksDB backend, performs better than does the file-based
workflow. Comparing the in-memory and RocksDB versions
of HEPnOS, we see that at the smaller node counts use of the
RocksDB backend does not cause any inefficiency. However, as
the node count increases beyond 32 nodes we see an increasing
cost. At higher node counts the in-memory back-end achieves
up to twice the throughput. With the in-memory backend
the HEPnOS based workflow achieves 85% strong scaling
efficiency at 128 nodes. For the kinds of real physics analysis
for which this sort of system would be used, the amount of
computing resources to be allocated would be determined by
the calculations to be performed after the candidate selection
was done. For realistic problems, it will almost always be the
case that the dataset would fit in the memory available on those
resources. We note that the size of the dataset used in these
tests is less than 5% of the full dataset used in the related
NOvA analysis. The dataset for this analysis is smaller than
those used in many other NOvA analysis tasks. Comparing
the HEPnOS in-memory performance with the traditional file-
based performance, we observe that the file-based application
is scaling poorly especially after 64 nodes at which point the
number of cores outnumbers the number of file to process.

7In communication with the ALCF staff, we were told that this is a failure
most often seen in the running of benchmark applications, but rarely seen in
applications.

Finally, we consider the throughput as a function of the
dataset size, for a fixed computing resource allocation size.
This is shown in figure 3. We use the 128 node allocation
because, due to techincal issues with the scripts handling the
file-based workflow, we were unable to execute that workflow
using 256 nodes on the 1929 file data sample. We see that, for
the file-based workflow, performance is especially poor for the
smaller datasets. This is because, for the smaller datasets, there
are not enough files to keep all the cores on the allocated nodes
busy. For the 1929 file sample, for example, only 24% of the
cores are busy. It also produces imbalance: even when using
as many processes as files, the duration of the application will
be determined by the duration taken to process the largest file.
This effect is greatly lessened in the HEPnOS workflow. While
in the file-based workflow the size of a “batch” of events to be
processed is determined by the file contents, in the HEPnOS
workflow the size of the batch is a tunable parameter. The
tuning that was done to optimize the throughput resulted in
some residual load-balancing inefficiency.
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Fig. 3. Plot illustrating the throughput of the traditional workflow compared
to the HEPnOS based workflow for varying sizes of datasets using 128 nodes.
We see that constraints set by the performance of the parallel file system
hamper the throughput achieved by the traditional based workflow for smaller
data-sets. The dots have been jittered to reduce over-plotting.

V. RELATED WORK

User-space data services tailored to specific applications have
emerged in the past few years to replace or supplement parallel
file systems. In situ and in transit analysis systems [19] are
examples of such services which aim to provide data analysis
and visualization capabilities for HPC simulations without in-
volving the file system. Storage services aim to leverage storage
capacity available on compute nodes (usually SSDs or memory)
during the execution of an application [2]. Some of these
storage services provide a familiar file system interface (e.g.
POSIX) while relaxing some constraints on consistency that
parallel file systems usually impose. UnifyFS [20], CHFS [21],
and GekkoFS [22] are examples of such services. Other services

Plot illustrating the throughput (in slices 
processed per second) as a function of the total 
number of nodes used for processing the data 
using the existing traditional workflow and the 
HEPnOS based workflows. The performance of 
the HEPnOS based workflow is superior across 
all the different number of nodes used. The 
dots have been jittered to reduce over-plotting. 
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OPPORTUNITIES?
§ Benchmarking on DOE platforms

– Talk with Florine on where to get these?
– Also Analysis Description Language (ADL) benchmarks?
– Coordinate on scaling, test file and DAOS (DFS and object) configurations

§ Darshan and ROOT (and RNTuple) (and DAOS)
– Capture, persist, analyze TTPerfStats and RNTuple performance data
– Will need io_uring support for RNTuple file
– May lead to performance optimization suggestions… 

§ RNTuple (internal) interface review
– My team has built a number of I/O abstractions
– May have some suggestions on the API between RNTuple and storage

• RPageSource/RPageSink (if I understood Jakob right)?
§ RNTuple HPC data service backend (i.e., like HEPnOS)?

– Would be a research activity…
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THANKS FOR LISTENING!


