

RNTuple in LHCb

M. Clemencic *on behalf of LHCb Collaboration* November 5, 2023

CERN - LHCb

- 1. Data flow in LHCb
- 2. Use of TTree in LHCb
- 3. Requirements for RNTuple

Data flow in LHCb

Data flow in LHCb: RTA

custom file format designed for streams of raw events

M. Clemencic - RNTuple in LHCb

Data flow in LHCb: DPA

Sprucing and Analysis Productions write ROOT files

Use of TTree in LHCb

- \cdot 2 use cases for TTree
 - data streams (DSTs), output of Sprucing
 - n-tuples for user analysis, output of Analysis Production
- DST
 - $\cdot\,$ one branch: the raw event BLOB
- n-tuples
 - mostly flat n-tuples
- User analysis implemented in Python

Requirements for RNTuple

- \cdot From the software framework point of view
 - LHCb software is multithreaded
 - I/O is lagging a bit behind
 - $\cdot\,$ thread-safe n-tuple library is highly appreciated

Requirements for RNTuple: analysis

- From analysis jobs point of view
 - we mostly need flat n-tuples
 - nested branches are useful sometimes
 - standalone library with Python bindings
 - \cdot we rely a lot on uproot
 - uproot support allows for transparent migration
 - *friend trees* would be greatly appreciated

Conclusions

- LHCb does not have very complicated requirements on n-tuples
 - apart from *friend trees*, maybe
- Very strong need of standalone decoder
 - to support Python based analysis
- Use of TFile/TTree for sequences of raw events (BLOBs) is under discussion

