
@@export_scripts@@

ALICE feedback on
RNTuple
Giulio Eulisse

@@export_scripts@@

ALICE Run 3
Analysis Framework
recap
Timeframe: ~2.3 ms continuous readout
detector data. Custom in-memory format.

Compressed Timeframes: result of
reconstruction. ROOT based custom format.

Analysis Tables: tabular representation of
analysis related quantities (e.g. tracks,
collisions, calorimetry information, triggers).

Dataframe: concatenated analysis tables
extracted from CTFs. Stored as ROOT
TTree s in a TFolder . O(100MB).

AO2D file: ROOT TFile containing O(100)
Dataframes.

@@export_scripts@@

ALICE Analysis Data
Model
Relational DB-like. Analysis quantities are described in
terms of tables, made of columns, and their
relationships.

Simple: there are only a few dozens of tables produced
by reconstruction (i.e. excluding derived user data).

Schema definition. C++ macros are used to define
columns and group them into tables. Basic types are
supported and some complex ones (e.g. fixed size
arrays and VLAs).

ORM layer. The macros also build an Object Relational
Mapping layer which provides the user the familiar
track.pt() experience.

Grouping is dynamic and part of the query (i.e. the C++
analysis task), not part of the data model.

Some special "dynamic columns" are computed in
batch at read time via Arrow's Gandiva expression
compiler.

@@export_scripts@@

I/O
Fully ROOT based:

The unit of reading is the data frame table (e.g. tracks)
which is loaded on demand.

Tables / trees are loaded in shared memory as Apache
Arrow tables. The ORM layer works directly on top of
Arrow, not on top of some C++ object graph.

TBulkBranchRead is used to do the actual read. While
rather performant, it unfortunately requires one extra
copy to shared memory.

Least significant bits zero-ing to improve
compression of certain column, physics permitting.

Schema evolution is handled via special conversion
tasks.

AO2D files are TFile s.–

Each table is a TTree s.–

Dataframes are just trees in TFolder s.–

Some small metadata present in terms of key -
value pairs stored in a TMap .

–

@@export_scripts@@

RNTuple ALICE interests
Different usecase. We are rather happy with the current setup. Admittedly it is a rather
different design compared to others. We would however profit a lot from a clean and
performant API for reading / writing columns of data to storage.

Simple usecase: no TRef s, no std::kitchen_sink , no polymorphism, no schema
evolution.

Hidden from the user. Baseline is that users will keep using our ORM layer.

Prototype. All the investigations done so far are limited proofs of concept. Converting
our data to RNTuple does not give much gains in terms of file size, as expected. We are
still evaluating the reading performance part.

Avoid one copy. Our major performance issue with TBulkBranchRead at the moment
is the extra copy it forces on us. We would greatly appreciate some Bulk API which
allows us to decompress directly to our own Arrow Table s / RecordBatch es.

Per-column compression algorithms. E.g. indices would benefit from delta encoding.

@@export_scripts@@

Current issues
Documentation is a tad sparse at the moment. In particular one would benefit from a
top-level view.

Issue with TFolder s: RNTupleWriter does not seem to know about TFolders. See
.

Bulk API:

A lot of people like TTree::Draw.

Analysis happens centrally in Analysis Facilities / Grid (Trains!). Any improvement from
special features needs to be deployed there for ALICE to exploit.

#14007

Not in v6.28.04. ALICE SW for now does not work with 6.30.00-rc1.–
Writing. Not there, AFAICT.–
Ownership. It's still impossible to have the bulk API write to non-owned buffers.–

https://github.com/root-project/root/issues/14007

@@export_scripts@@

Kudos...
... to Jakob for the help...

