
https://root.cern

ROOT
Data Analysis Framework

First Feedback Summary

 

RNTuple Format and Feature Assessment
2023-11-07

https://root.cern


Feedback and Questions

⏺ Features foreseen for deprecation

⬦ There is a path towards removal of dynamic polymorphism and network pointers, which includes

⬩ Support of std::variant in current production ROOT I/O

⬩ Addressing TTree schema evolution issues for a gradual EDM transition

⬩ HEPMC, TH1*: no unsplit storage

⬦ Keep std::map and std::set in RNTuple

⬦ TTree::Scan to be replaced by RDataFrame, TTree::Show available in RNTuple

⬦ TTree::SetAlias used only to rename branches

⬩ Equivalent functionality exists with RNTuple "projected fields"

⬦ No obvious blockers regarding other feature deprecations 
(TRef, in-memory trees, recursive data structures, page-level selection of compression algorithm)

2



Feedback and Questions

⏺ Type support in RNTuple

⬦ Full functionality of ROOT low-precision floats in RNTuple

⬩ Work in progress on better ways of controlling nested use of low precision floats 
(e.g., in collections)

⬦ No low-precision ints foreseen (should be handled well by compression)

⬩ May change if there is a need for packed ints in memory (?)

⬦ Need for std::unordered_map, std::unordered_set, multi-dimensional C-style arrays

⬦ Support for std::span, std::mdspan

⬩ Nothing prevents us from adding support but we would wait for a concrete need, 
i.e. currently not foreseen for a first production version

⬦ I/O for Python dictionaries: is there a concrete need?

⬩ std::map can be instantiated from a Python dict in cppyy

3



Feedback and Questions

⏺ Reading and writing

⬦ TTreeCache fully replaced by RClusterPool (async cluster preloading, turned on by default)

⬦ Bulk read & write API: need for an option to put the framework in charge of the memory allocation

⬦ Need indexed (friend) event iteration for the first production release

⬦ Plans for concurrent writes

⬩ "Mild scalability": one entry per thread, filling (= serialization) protected by a mutex

⬩ Low/no memory overhead

⬩ "High scalability": one cluster per thread

⬩ Serialization + compression lock-free, thread-driven (= parallel) writing with very brief serialization

⬩ Requires order of cluster size extra memory per thread (<100MB)

⬩ Can evolve into more sophisticated version where several threads aggregate writing,
foreseen as a feature after the first production release

⬦ Plans for direct I/O to GPU memory: absolutely, but likely not for the first production release

4



Feedback and Questions

⏺ Requests for the existing production I/O system

⬦ Desirable to generally propagate standard int types down to the ROOT I/O layer

⬦ Desired improvement for enums: load dictionary without auto-parsing header

⬦ Passing arbitrary data to the read rules

⏺ Common ground for additional tooling (e.g., data diffing, validation)

⬦ Maybe a good opportunity for external contributions?

⏺ Schema evolution will work in the same way than for TTree

⬦ Note that we are likely starting "fresh" with data stored in RNTuple, 
which emphasizes good testing since we don't have the real-world validation of year of class 
schema history

⏺ TTree will always be part of ROOT

⬦ Focus of attention gradually moves to RNTuple

5



Feedback and Questions

⏺ Meta-data: there is a sense of a common problem core shared by all experiments, 
but that core is not yet clearly identified

⬦ Proposal: dedicated meta-data functionality in RNTuple after the first production version

⬦ Should use next year to narrow down the problem

⬩ Possible subject/center of next RNTuple workshop.

⏺ I/O for SoA

⬦ Bulk reading of entire columns (ALICE case)

⬩ Benefit from new interface to communicate the read buffer location to reduce memcpy

⬦ Reading of classes into a user-provided layout (CMS case)

⬩ Requires a new interface to communicate the in-memory layout between application and 
ROOT

6



Work Scheduling Notes

⏺ High-priority items to unblock other activities

⬦ Fast merging to start larger-scale ATLAS workflow tests

⬦ Chains to start AGC tests

⬦ Remaining type support for CMS MiniAODs

⬩ Modulo dynamic polymorphism but with required bits for gradual transition

⬦ API adjustments in preparation of the interface review

7


