# HIKE: The High-Intensity Kaon Experiments at CERN

# Proposal for Phase 1 and 2

Prof. Cristina Lazzeroni University of Birmingham, on behalf of HIKE



HIKE: 194 collaborators from 41 institutions in the Proposal of HIKE Phase 1 and 2

SPSC Open Session, 5 September 2023, CERN

### **Exploring flavour physics through Kaon decays**

Over-constraining unitary triangle via kaon decays is a crucial test of the SM. Sensitive to unprecedented mass scales (well beyond those reachable at LHC). [arXiv:1408.0728] Presently, main limitation to the investigation of several modes comes from the experimental precision. The primary goal of HIKE is to improve the accuracy.



Measuring all charged and neutral rare K decay modes gives clear insight about the new physics flavour structure

### HIKE will address many of these channels Only experiment worldwide that is able to do so

The HIKE broad physics programme consists of phases using shared detectors and infrastructure

### **Ultra-rare Kaon Decays** $K \rightarrow \pi \nu \bar{\nu}$





A high-order process with highest CKM suppression:

A ~  $(m_t/m_w)^2 |V_{ts}^*V_{td}| ~ \lambda^5$ 

### Extremely rare decays, rates very precisely predicted in SM

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2.8} \cdot \left[\frac{\gamma}{73.2^{\circ}}\right]^{0.74} \quad \text{[JHEP 1511} \\ \text{(2015) 033]} \\BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right]^{2} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2} \cdot \left[\frac{\sin \gamma}{\sin 73.2^{\circ}}\right]^{2}$$

[arXiv:2105.02868, arXiv2203.09524]

Present error budget presently dominated by CKM inputs [JHEP 1511 (2015) 033]

Combination of parameters that are less / not sensitive to New Physics: approach proposed recently to eliminate dependence on  $V_{cb}$  and gamma leads to 5% precision. (Correlations with  $\varepsilon_k$  depends only on  $\beta$  and are well predicted, allowing experimental tests).

arXiv:2203.11960, arXiv:2109.11032

SM predictions accuracy may improve over the next decade due to lattice QCD progress on the charm contribution [arXiv:1806.11520, arXiv:1910.10644]

### "Free" from hadronic uncertainties Exceptional SM precision

Non-parametric uncertainty: 1.5% for  $K_L$ , 3.5% for  $K^+$ 

## **Clear opportunity in the kaon sector**

NA62 will measure  $K^+ \rightarrow \pi^+ v v$  to O(15%) precision with Run1&2 data

### After LS3, HIKE approaches theory error and show possible evidence of deviation from SM

High sensitivity to NP (non-MFV): significant variations wrt SM BSM affects *K*<sup>+</sup> and *K*<sub>L</sub> differently Measurements of both discriminate NP



### Precision measurements of $K \rightarrow \pi v v$ BRs provide model-independent tests for NP with sensitivity to O(100) TeV scale [arXiv:1408.0728]

| NP scenarios               | Process                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------|
| Z-FCNC                     | $K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \pi^0 \nu \bar{\nu}, \varepsilon' / \varepsilon$             |
| Z'                         | $K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \pi^0 \nu \bar{\nu}, \varepsilon' / \varepsilon, \Delta M_K$ |
| Simplified models          | $K_L 	o \pi^0  u ar  u, arepsilon' / arepsilon$                                                    |
| LHT                        | All K decays                                                                                       |
| 331 models                 | Small effects in $K \to \pi v \bar{v}$                                                             |
| Vector-like quarks         | $K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \pi^0 \nu \bar{\nu}, \Delta M_K$                             |
| Supersymmetry              | $K^+  ightarrow \pi^+  u ar{ u},  K_L  ightarrow \pi^0  u ar{ u}$                                  |
| 2HDM                       | $K^+  ightarrow \pi^+  u ar{ u},  K_L  ightarrow \pi^0  u ar{ u}$                                  |
| Universal extra dimensions | $K^+  ightarrow \pi^+  u ar{ u},  K_L  ightarrow \pi^0  u ar{ u}$                                  |
| Randall-Sundrum models     | All rare K decays                                                                                  |
| Leptoquarks                | All rare K decays                                                                                  |
| SMEFT                      | Several processes in K system                                                                      |
| SU(8)                      | $K^+  ightarrow \pi^+  u ar{ u},  K_L  ightarrow \pi^0  u ar{ u}$                                  |
| Diquarks                   | $K^+  ightarrow \pi^+  u ar{ u},  K_L  ightarrow \pi^0  u ar{ u},  arepsilon_K$                    |
| Vector-like compositeness  | $K^+  ightarrow \pi^+  u ar{ u}, K_L  ightarrow \pi^0  u ar{ u}, arepsilon_K$                      |

[Table from arXiv:2203.09524]

[JHEP 1511 (2015) 166, EPJ C76 (2016) 182, JHEP 0903 (2009) 108, PEPT 2016 123802, JHEP 0608 (2006) 064, EPJ C77 (2017) 618, arXiv:1705.10729, arXiv:2207.00018, arXiv:2203.09524]

# **HIKE design: Phase 1**

### K<sup>+</sup> : 1.2 10<sup>13</sup> protons on T10 per spill (4.8 sec)



NA62-like design will work @high intensity. Improved timing is the crucial element to be able to increase intensity 4 x NA62.

Detector keystones:

1) High-efficiency and high-precision tracking

2) High-precision time measurements

3) High-performance particle identification system

4) Comprehensive and hermetic veto systems

Statistical power: 2 10<sup>13</sup> Kaon decays in decay volume per year (7.2 10<sup>18</sup> POT / year)

#### Technological solutions exist for all detectors

## HIKE Phase 1 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Physics sensitivity: K/ $\pi$ ID



RICH PID for  $\pi$  with 15 c.

RICH reconstruction efficiency: photon yield and photodetector time resolution to resolve rings overlapping in space. RICH granularity increased, x2 QE, 100ps time resolution. Also muon plane with high granularity, x4 better timing.



#### KTAG x4 better timing.

Kaon-pion matching depend on time resolution and pixel size of GTK, and resolution on slope of pion track. x4 time resolution, x3 smaller pixel size, 40% lower material budget in STRAW.

HIKE: pion ID with at least 10% higher efficiency than NA62 when keeping same muon–pion misidentification probability. K-pion misidentification probability ~2%, similar to NA62. Kaon–pion efficiency ×1.1 higher than NA62.

## HIKE Phase 1 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Physics sensitivity : random veto

Criteria to veto photons and extra activity in-time in detectors induce intensity-dependence signal loss: "random veto" due to sharp cuts on the time of the signals recorded by the various subdetectors.

Critical performance indicator: "random veto efficiency" versus beam intensity, measured on data:  $K^+ \rightarrow \mu^+ \nu$ 



NA62: Signal selection efficiency ~65% at max beam intensity in Run2

Quasi-linear dependence on the instantaneous beam intensity. Limiting factor is the timing precision of the detectors (and double pulse resolution).

HIKE: maintain or improve the random-veto efficiency. Requires an improvement in the time resolution for the veto systems at least by the same factor as the intensity increase.

# HIKE Phase 1 $K^{\scriptscriptstyle +}$ ightarrow $\pi^{\scriptscriptstyle +} u ar{ u}$ Physics sensitivity : Kinematics





#### Missing mass tails for $K^+ \rightarrow \pi^+ \pi^0$

#### NA62 MC extensively validated with data.

The main kaon decay modes enter the signal regions via resolution tails in the reconstructed value of missing mass. Choice of signal regions is determined by resolution. Slightly better missing mass resolution at HIKE vrt NA62 (40% less material budget in Straw). Missing mass with RICH much improved.

HIKE can optimise the signal regions to increase the signal acceptance by 10% compared to NA62, while maintaining the resolution tails at the same level.

## HIKE Phase 1: $K^+ ightarrow \pi^+ \nu \bar{\nu}$ Physics sensitivity

Components describing signal intensity dependence: 1) Dead-time-equivalent paralyzable

1) Dead-time-equivalent paralyzable model that accounts for intensity dependence of the trigger, DAQ, and all selection criteria (except Random Veto).

2) Polynomial description of the random veto efficiency



Recovery of LocalTriggerUnit dead-time, kaon-pion association, improved RICH, better kinematic resolution.

Improved timing, software trigger and new DAQ

Background from K decays to remain the same fraction of signal.

Upstream background reduced to same level as K background. Improved coverage and design of upstream background veto. Improved time resolution allows corresponding reduction of time windows.

| Number of spills                                                 | $2.4 \times 10^{6}$  |
|------------------------------------------------------------------|----------------------|
| Protons on target                                                | $3.2 \times 10^{19}$ |
| $K^+$ decays in FV                                               | $8.0 \times 10^{13}$ |
| Expected SM $K^+ \to \pi^+ \nu \bar{\nu}$                        | 480                  |
| Background from $K^+$ decays                                     | 115                  |
| Upstream/accidental background                                   | 85–240               |
| Expected statistical precision $\sigma(\mathcal{B})/\mathcal{B}$ | 5.4%-6.1%            |

## **HIKE Phase 1: physics reach**

Precision test of the Standard Model:

Measurement of branching ratio offers model-independent standard candle that can constrain any BSM scenarios, present or future



Blue = measurements Red = projections

### **HIKE Phase 1: examples of specific BSM models**



Constraints on a top-philic Z', on mass vs gauge coupling,

Top-philic Z': (revisited by F. Kahlhoefer) see Refs. [JHEP 03 (2018) 074, Phys. Rev. D 97 (2018) 035002]. Assumed vector couplings to muons and tau leptons, and couplings to top quarks induced via mixing with a vector-like quark with mass 2 TeV and mixing angle 0.5. Lepton couplings are chosen such that various anomalies in  $b \rightarrow s$  transitions can be fitted (green shaded region). Blue shaded regions (blue lines) indicate the current exclusion with 139 fb<sup>-1</sup> (projection for 3 ab<sup>-1</sup>) for ATLAS. [CERN Physics Beyond Colliders Document, in preparation]



Leptoquark model: (revisited by D.Marzocca)

Constraints on coupling of S1 leptoquark from flavour and electroweak observables vs leptoquark mass. Region above each line is excluded at 95%CL. Constraints are derived using the complete oneloop matching of this leptoquark to the SMEFT derived in Ref. [JHEP 07 (2020) 225] following the pheno analysis of Refs. [JHEP 01 (2021) 138, Eur. Phys. J. C 82 (2022) 320 ].

# $K^+ \rightarrow \pi^+ l^+ l^-$

LD dominated, mediated by  $K^+ \rightarrow \pi^+ \gamma^*$ 

$$d\Gamma/dz \propto G_F M_K^2(a+bz) + W^{\pi\pi}(z)$$

$$m(l^+l^-)^2/M_K^2 \qquad \text{Form factors (FF)} \qquad K \quad \text{loop t}$$

 $z = m(l^+l^-)^2/M_K^2$ 

(non pert. QCD)

 $K_{3\pi}$  loop term

Long-distance effects are purely universal

Lepton universitality (LU) predicts same a, b for  $l = e, \mu$ 

 $a_{+}^{\mu\mu} - a_{+}^{ee} = -\sqrt{2} \operatorname{Re} \left[ V_{td} V_{ts}^{*} (C_{9}^{\mu} - C_{9}^{e}) \right] \qquad \begin{array}{l} \text{[JHEP 02 049 (2019),} \\ \text{PRD 93 074038 (2016)]} \end{array}$ 

Long-distance contribution to the difference cancels out and is sensitive only to short-distance effects Difference correlated to possible anomalies in B physics

HIKE Phase 1: Collect > 5x10<sup>5</sup> background-free  $K^+ \rightarrow \pi^+ l^+ l^-$ Measure Δa and Δb to ±0.007 and ±0.015 precision

Sensitivity also to many radiative decays of interest, i.e  $K^+ \rightarrow \pi^+ \gamma \gamma$  precision of few per mille



# **Feebly interacting particles (FIPs)**

HIKE Fixed-target configuration, long decay volume: suitable to **search for FIPs, in kaon and beam-dump.** Exploring regions below 1 GeV, with unprecedented sensitivity. Detector low rate allows for high beam intensity.

Search for FIP production in kaon mode:  $K^+ \rightarrow l^+ N, K^+ \rightarrow \pi^+ X, ...$ 

Dump mode is most sensitive to forward processes, complementary to off-axis experiment SHADOWS. An ad-hoc setting of the dipoles allows a substantial reduction of the rate of muons emitted by pion decays in the proton-induced hadronic showers in the TAX.

1.4 × 10<sup>17</sup> protons collected by NA62 in 2021 in beam-dump mode: data analysis shows that residual background is negligible, in particular when searching for two-body decays of new-physics mediators. Collected 4 10<sup>17</sup> POT so far in 2021-2023.

|          |                  | μ              | + μ <sup>-</sup>                                                                                                                                                                                                                    |                     |             |                                              |                                                            |                          |                                  |                                        |                              |
|----------|------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|----------------------------------------------|------------------------------------------------------------|--------------------------|----------------------------------|----------------------------------------|------------------------------|
| [mm] 500 |                  |                | alan di kanan di kana<br>Kanan di kanan di kana |                     | 0.0025<br>× | Condition<br>$e\mu$ PID<br>$e\mu$ PID ANTLO  | $N_{exp} \pm \delta N_{exp}$ $2905 \pm 1455$ $8.6 \pm 6.1$ | N <sub>obs</sub><br>2896 | $p(L < L_{obs})$<br>0.97<br>0.61 | F                                      | or 5 x 10 <sup>19</sup> POT: |
|          | 0 — .<br>        |                |                                                                                                                                                                                                                                     |                     |             | $e\mu$ PID, LAV                              | $728 \pm 365$                                              | 645                      | 0.94                             | Final state                            | Expected background          |
| 300      |                  |                | <b></b>                                                                                                                                                                                                                             |                     | 0.0015 tg   | eμ PID, LAV+ANTI-0<br>eμ PID, CR             | $\begin{array}{c} 0\\ 50 \pm 26 \end{array}$               | 2<br>49                  | 0.25*                            | $\mu^+\mu^-$                           | < 0.02                       |
| 200      |                  | R <sub>1</sub> |                                                                                                                                                                                                                                     |                     | Ш           | $e\mu$ PID, SR<br>$e\mu$ PID, I AV+ANTLO, CR | $2.5 \pm 1.8$                                              | 3                        | 0.83                             | $e^+e^-$                               | < 0.9                        |
| 200      |                  | R              |                                                                                                                                                                                                                                     |                     | -0.001      | $e\mu$ PID, LAV+ANTI-0, SR                   | 0                                                          | 0                        | _                                | $\pi^+\pi^-(\gamma)$                   | < 0.09                       |
| 100      | 0 <mark>-</mark> |                |                                                                                                                                                                                                                                     |                     | -0.0005     |                                              |                                                            |                          |                                  | $\mu^{\pm}\pi^{\mp}, e^{\pm}\pi^{\mp}$ | < 0.1                        |
| (        |                  |                |                                                                                                                                                                                                                                     |                     | 0           | [arXiv: 2303.08666                           | 5]                                                         |                          |                                  | $\gamma\gamma$                         | work in progress             |
| _        | -50 0            | 50 100         | 150                                                                                                                                                                                                                                 | Z <sub>τΔX</sub> [m | )<br>]      |                                              |                                                            |                          |                                  |                                        | 12                           |

## **HIKE Phase 1: FIPs sens**

 $5 \times 10^{19}$  POT in dump mode are assumed, taken in 4 years concurrently with SHADOWS operation, with  $2 \times 10^{13}$  POT over 4.8 s. HIKE has unique complementarity between kaon and dump modes. HIKE sensitive to all BC benchmarks except BC3,BC5.

 $10^{-2}$ 

 $10^{-3}$ 

SN1987A

 $10^{-1}$ 

10

 $m_{A'}$  [GeV]



Selection of benchmarks shown here. For the others, see HIKE Proposal. Complementary phase space to SHADOWS.

In kaon mode, sensitivity also to non minimal scenarios.

# $K_L \rightarrow \pi^0 \ell^+ \ell^-$

Contributions from long-distance physics

- SD CPV amplitude:  $\gamma/Z$  exchange
- LD CPC amplitude from  $2\gamma$  exchange
- LD indirect CPV amplitude:  $K_L \rightarrow K_S$
- $K_S \rightarrow \pi^0 \ell^+ \ell^-$  will help reducing theoretical uncertainties
  - measured NA48/1 with limited statistics
  - planned by LHCb Upgrade
- $K_L \rightarrow \pi^0 \ell^+ \ell^-$  can be used to explore helicity suppression in FCNC decays

[arXiv:hep-ph/0404127,arXiv:hpe-ph/0404136 arXiv:hep-ph/0606081] [arXiv:0705.2025, arXiv:1812.00735, arXiv:1906.03046]

Experimental bounds from KTeV:

Main background:  $K_L \rightarrow \ell^+ \ell^- \gamma \gamma$ 

• Like  $K_L \rightarrow \ell^+ \ell^- \gamma$  with hard bremsstrahlung

 $BR(K_L \to e^+ e^- \gamma \gamma) = (6.0 \pm 0.3) \times 10^{-7}$  $BR(K_L \to \mu^+ \mu^- \gamma \gamma) = 10^{+8}_{-6} \times 10^{-9}$ 

 $K_L \rightarrow \pi^0 \ell^+ \ell^-$  CPV amplitud constrains UT η

itude  

$$\begin{array}{c}
\left(\overline{\rho}, \overline{\eta}\right) \\
\left(\overline{\rho}, \overline{\eta}, \overline{\rho}\right) \\
\left(\overline{\rho}, \overline{\rho}, \overline{\rho}\right) \\
\left(\overline{\rho}, \overline{\rho$$

(2 sets of values corresponding to constructive (destructive) interference btw direct and indirect CP-violating contributions)

Phys. Rev. Lett. 93 (2004) 021805 Phys. Rev. Lett. 84 (2000) 5279–5282

 $E_{\gamma}^* > 5 \text{ MeV}$  $m_{\gamma\gamma} > 1 \text{ MeV}$ 

 $BR(K_L \rightarrow \pi^0 e^+ e^-) < 28 \times 10^{-11}$ 

 $BR(K_L \rightarrow \pi^0 \mu^+ \mu^-) < 38 \times 10^{-11}$ 



👝 ı İm

# **HIKE design: Phase 2**

### K<sub>L</sub> + tracking: 2 10<sup>13</sup> protons on T10 per spill (4.8 sec)



- 120 m long neutral beamline, secondary beam opening angle = 0.4 mrad
- 2.4 mrad production angle
- using detectors of previous phase, with some modifications
- minor modifications to make left/right symmetric and optimize geometrical acceptance. Reduction of dipole-magnet field by about 20%.

Statistical power: 3.8 10<sup>13</sup> Kaon decays in decay volume per year (1.2 10<sup>19</sup> POT/year)

## **HIKE Phase 2: signal and background**



|   | Mode                                    | Phase space region                             | Branching ratio                  |
|---|-----------------------------------------|------------------------------------------------|----------------------------------|
|   | $K_L \rightarrow \gamma \gamma e^+ e^-$ | $x = (m_{ee}/m_K)^2 > 0.05,$                   | $(1.55 \pm 0.05) \times 10^{-7}$ |
|   |                                         | $x_{\gamma} = (m_{\gamma\gamma}/m_K)^2 > 0.01$ |                                  |
|   | $K_L \to \gamma \gamma \mu^+ \mu^-$     | $x_{\gamma} = (m_{\gamma\gamma}/m_K)^2 > 0.01$ | $(1.49 \pm 0.28) \times 10^{-9}$ |
| 1 |                                         |                                                |                                  |

Suppression of the  $K_L \rightarrow \gamma \gamma l^+ l^-$  background: rely on **excellent photon energy resolution** provided by the HIKE EM calorimeter.

## **HIKE Phase 2: background estimate**



$$y_{\gamma} = \frac{2P \cdot (k_1 - k_2)}{m_K^2 \cdot \lambda^{1/2} (1, x, x_{\gamma})}$$

*P* = kaon four-momentum*k* = photon four-momenta

$$x = (m_{ee}/m_K)^2$$

$$x_{\gamma} = (m_{\gamma\gamma}/m_K)^2$$

$$\lambda(a,b,c)=a^2+b^2+c^2-2(ab+bc+ac)$$

 $\theta_{\ell\gamma}^{\min}$  = smallest angle between any photons and any leptons in the kaon frame

 $K_L \rightarrow \pi^+ \pi^- \pi^0$  decay, with pion decaying in flight is sub-dominant

# **HIKE Phase 2: Physics sensitivity**

| Number of spills            |                      | 3  | $\times 10^{6}$        |                                  |  |  |  |
|-----------------------------|----------------------|----|------------------------|----------------------------------|--|--|--|
| Protons on target           | $6 \times 10^{19}$   |    |                        |                                  |  |  |  |
| $K_L$ decays in FV          | $1.9 \times 10^{14}$ |    |                        |                                  |  |  |  |
| Mode                        | N <sub>S</sub>       | NB | $N_S/\sqrt{N_S + N_B}$ | $\delta \mathcal{B}/\mathcal{B}$ |  |  |  |
| $K_L \to \pi^0 e^+ e^-$     | 70                   | 83 | 5.7                    | 18%                              |  |  |  |
| $K_L \to \pi^0 \mu^+ \mu^-$ | 100                  | 53 | 8.1                    | 12%                              |  |  |  |

First observation, with a significance above  $5\sigma$ , and measurement of both ultra-rare decay modes

$$\mathcal{B}_{\rm SM}(K_L \to \pi^0 e^+ e^-) = \left( 15.7 |a_S|^2 \pm 6.2 |a_S| \left( \frac{{\rm Im} \,\lambda_t}{10^{-4}} \right) + 2.4 \left( \frac{{\rm Im} \,\lambda_t}{10^{-4}} \right)^2 \right) \times 10^{-12}$$
LHCb Phase-I upgrade: form-factor parameter  $a_S$   
$$\mathcal{B}_{\rm SM}(K_L \to \pi^0 \mu^+ \mu^-) = \left( 3.7 |a_S|^2 \pm 1.6 |a_S| \left( \frac{{\rm Im} \,\lambda_t}{10^{-4}} \right) + 1.0 \left( \frac{{\rm Im} \,\lambda_t}{10^{-4}} \right)^2 + 5.2 \right) \times 10^{-12}$$
to 5% relative precision.

Assuming constructive interference, determine the CKM parameter  $\lambda_{t}$ :

$$\frac{\delta(\operatorname{Im}\lambda_t)}{\operatorname{Im}\lambda_t}\Big|_{K_L \to \pi^0 e^+ e^-} = 0.33 \qquad \frac{\delta(\operatorname{Im}\lambda_t)}{\operatorname{Im}\lambda_t}\Big|_{K_L \to \pi^0 \mu^+ \mu^-} = 0.28 \qquad \Longrightarrow \qquad 20\% \text{ precision on}$$

CKM parameter  $\lambda_{t}$ 

# **Kaon Global Fit**

 $\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}}\lambda_t^{sd}\frac{\alpha_e}{4\pi}\sum_k C_k^\ell O_k^\ell$ 

Global fits to set of kaon measurements, in the framework of lepton universality. Deviation of Wilson coefficients from SM, for NP scenarios with only left-handed quark currents.

$$O_L^{\ell} = (\bar{s}\gamma_{\mu}P_L d) (\bar{\nu}_{\ell} \gamma^{\mu} (1 - \gamma_5) \nu_{\ell})$$
$$C_k^{\ell} = C_{k,\text{SM}}^{\ell} + \delta C_k^{\ell}$$
$$\delta C_L^{\ell} \equiv \delta C_9^{\ell} = -\delta C_{10}^{\ell}$$

[CERN Physics Beyond Colliders Document in preparation, and paper In preparation by D'Ambrosio, Mahmoudi, Neshatpour]



Bounds from individual observables. Coloured regions are 68%CL measurements Dashed lines are 90%CL upper limits With projections: central value for existing measurements kept the same, A upper bounds extrapolated to central value consistent with SM, B central value of all observables is projected to the best-fit points obtained from fits to existing data

## **Other physics opp**

Test of Lepton Unive in K<sup>+</sup> and K<sub>L</sub> decays



**Cabibbo Angle Anon** Use the provided of the



Figure 3: Status of first-row CKM unitarity in 2023. Left: measurements of  $V_{us}$ ,  $V_{us}/V_{ud}$ , and  $V_{ud}$  and relation to CKM unitarity. Right: constraints on right-handed currents from observed unitarity Genetics. Clarify the Origin Of the Cabibbo anomaly. In scenario illustrated, HIKE resolves tension between kµ2 and kl3 but confirms anomaly due to fVust principal decay

modes provide overall information on all isospin amplitudes,  $\pi\pi$  phase shifts, the  $\Delta I = 1/2$  rule, and a test of the weak chiral Lagrangian [86, 87], as well as inputs for theoretical and experimental studies of the form factors of the  $K^+ \rightarrow \pi^+ \gamma \gamma$ ,  $K^+ \rightarrow \pi^+ \ell^+ \ell^-$  and

Constraints from CKM unitarity on the contributions to the leptonic and semileptonic kaon decay amplitudes from right-handed quark currents



Figure 28: Status of first-row CKM unitarity in future scenario with measurements from HIKE Phases

## **HIKE: detector**

| Detector                   | Phase 1  | Phase 2 | Comment                                  | Preliminary group interests             |
|----------------------------|----------|---------|------------------------------------------|-----------------------------------------|
| Cherenkov tagger           | upgraded | removed | faster photo-detectors                   | UK                                      |
| Beam tracker               | replaced | removed | 3D-trenched or monolithic silicon sensor | Italy,CERN,UK,Belgium,Canada,France     |
| Upstream veto detectors    | replaced | kept    | SciFi                                    | Switzerland                             |
| Large-angle vetos          | replaced | kept    | lead/scintillator tiles                  | UK                                      |
| Downstream spectrometer    | replaced | kept    | STRAW (ultra-thin straws)                | CERN,Kazakhstan,Slovakia,Czech Republic |
| Pion identification (RICH) | upgraded | removed | faster photo-detectors                   | Italy,Mexico                            |
| Main EM calorimeter        | replaced | kept    | fine-sampling shashlyk                   | Italy                                   |
| Timing detector            | upgraded | kept    | higher granularity                       | Belgium                                 |
| Hadronic calorimeter       | replaced | kept    | high-granularity sampling                | Germany                                 |
| Muon detector              | upgraded | kept    | higher granularity                       | Germany                                 |
| Small-angle calorimeters   | replaced | kept    | oriented high-Z crystals                 | Italy                                   |
| HASC                       | upgraded | kept    | larger coverage                          | Romania                                 |

Detector estimated cost: 27.5 M CHF

|                                   | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 |   |
|-----------------------------------|------|------|------|------|------|------|------|---|
| 1) Detector studies               |      |      |      |      |      |      |      | ] |
| 2) Technical Design Report        |      |      |      |      |      |      |      |   |
| 3) Detector prototyping           |      |      |      |      |      |      |      |   |
| 4) Detector production            |      |      |      |      |      |      |      |   |
| 5) Installation and commissioning |      |      |      |      |      |      |      |   |
| 6) Start physics data-taking      |      |      |      |      |      |      | •    |   |



'-PMT array and matrix of four MCP-PMT



ifferential Cherenkov detector

|                                                 | NA62 RICH | HIKE RICH |
|-------------------------------------------------|-----------|-----------|
| Sensor type                                     | PMT       | SiPM      |
| Sensor time resolution                          | 240 ps    | 100 ps    |
| Sensor quantum efficiency                       | 20%       | 40%       |
| Number of hit for $\pi^+$ at 15 GeV/ <i>c</i>   | 7         | 14        |
| Number of hit for $\pi^+$ at 45 GeV/ <i>c</i>   | 12        | 24        |
| Time resolution for $\pi^+$ at 15 GeV/ <i>c</i> | 90 ps     | 27 ps     |
| Time resolution for $\pi^+$ at 45 GeV/ <i>c</i> | 70 ps     | 20 ps     |

#### for 4x intensity

#### **RICH detector using neon at atmospheric**

pressure

|      | 3x3 mm <sup>2</sup> | 62K | 2.3 mm | 0.66 mm |
|------|---------------------|-----|--------|---------|
| SiPM | 6x6 mm <sup>2</sup> | 16K | 2.8 mm | 0.78 mm |
|      | 9x9 mm <sup>2</sup> | 7K  | 3.4 mm | 0.95 mm |

# **HIKE: Tracking**

|                                                                     | NA62 GigaTracker     | New beam tracker      |
|---------------------------------------------------------------------|----------------------|-----------------------|
| Single hit time resolution                                          | < 200 ps             | < 50 ps               |
| Track time resolution                                               | < 100 ps             | < 25 ps               |
| Peak hit rate                                                       | $2 \text{ MHz/mm}^2$ | 8 MHz/mm <sup>2</sup> |
| Pixel efficiency                                                    | > 99 %               | > 99 %                |
| Peak fluence / 1 year $[10^{14} 1 \text{ MeV } n_{eq}/\text{cm}^2]$ | 4                    | 16                    |

### TimeSPOT



Hybrid 3D-trenched technology

|                                      | Current NA62 spectrometer | New straw spectrometer |
|--------------------------------------|---------------------------|------------------------|
| Straw diameter                       | 9.82 mm                   | 4.82 mm                |
| Straw length                         | 2100 mm                   | 2100 mm                |
| Planes per view                      | 4                         | 8                      |
| Straws per plane                     | 112                       | ~160                   |
| Straws per chamber                   | 1792                      | ~5200                  |
| Mylar thickness                      | 36 µm                     | (12 or 19) µm          |
| Anode wire diameter                  | 30 µm                     | (20 or 30) µm          |
| Total material budget                | $1.7\% X_0$               | $(1.0 - 1.5)\% X_0$    |
| Maximum drift time                   | ~150 ns                   | ~80 ns                 |
| Hit leading time resolution          | (3-4) ns                  | (1-4) ns               |
| Hit trailing time resolution         | ~30 ns                    | ~6 ns                  |
| Average number of hits hits per view | 2.2                       | 3.1                    |

### for 4x intensity



#### for 4x intensity

# **Electromagnetic Calorimeter**

Main electromagnetic calorimeter requirements:

excellent efficiency and time resolution (~100ps), good two-cluster separation, good energy resolution



Efficiency/energy resolution suitable for Phase 1 Time resolution needs 4x improvement for HIKE

### Main Electromagnetic Calorimeter:



Fine-sampling shashlyk based on PANDA forward EM calorimeter

PANDA prototypes:

- $\sigma_E / \sqrt{E} \sim 3\% / \sqrt{E}$  (GeV)
- $\sigma_t \sim 72 \text{ ps} / \sqrt{E} \text{ (GeV)}$
- $\sigma_x \sim 13 \text{ mm} / \sqrt{E} \text{ (GeV)}$

Information from spy tiles provides 5-10x improvement in neutron rejection Overall neutron rejection at level of 10<sup>3</sup>

In synergy with AIDAinnova, exploring the potential use of nanocomposite scintillators for faster time response and increased radiation robustness. Also for LAV and SAC.

# Summary

HIKE offers excellent sensitivity for new physics at higher mass scales than those accessible at colliders – in certain channels, higher than B physics. A unique system in which BSM and flavour dynamics can be explored, complementary to B.

HIKE provides a powerful tool to perform comprehensive measurements at an unprecedented level of precision, and to search for physics beyond the Standard Model in flavour physics and beyond.

Only place worldwide where this programme is addressed experimentally.

The experimental programme is based on a phase approach involving charged and neutral kaon beams, as well as operation in beam-dump mode, relying on a common infrastructure and set of detectors. Complementary to SHADOWS sensitivity in dump mode. Synergetic detector challenges with LHC programme.

Unique and timely opportunity to address a strongly motivated physics case at CERN NA facility

**Thank you for listening !** 



 $10^{-3}$ 













## **HIKE Phase 1: FIPs sensitivity**



 $m_{\rm e}\,[{\rm GeV}/c^2]$ 

## **HIKE Phase 1: Beyond the branching ratio**



Scalar component fraction at the level of 10<sup>-11</sup> is observable at HIKE Shape analysis in progress

FCNC: SD + important contributions from LD. SD: CPV for KS, CPC for KL



Prediction depends on the sign of the  $K_L \rightarrow \gamma \gamma$  amplitude that determines the effect of the SD – LD interference contribution

[LD+]: 
$$(6.82^{+0.77}_{-0.24} \pm 0.04) \times 10^{-9}$$
, [LD-]:  $(8.04^{+1.66}_{-0.97} \pm 0.04) \times 10^{-9}$  Theory work ongoing  
HIKE Phase 2: sensitivity to  $K_L \rightarrow \mu^+ \mu^-$  to 1% (stat+syst)  
Sensitivities of O(10<sup>-12</sup>) for branching ratios of a broad range of rare and forbidden  $K_L$  decay modes

#### [arXiv:1707.06999, arXiv:2104.06427]



[Buras, and Fleisher, Adv. Ser. Direct. High Energy Phys. 15, 65 (1998)]

```
Theory work ongoing
```



## **Scenarios**

At HIKE, kaon physics is the highest priority while the sensitivity to FIPs is an extension to the flavour programme that adds value and scheduling flexibility.

The sharing between kaon and beam-dump modes is a matter of scientific scheduling, that by 2031 will take into account the physics priorities at that time and the results from current experiments.

The possibility of switching rapidly between kaon and beam-dump modes adds flexibility to the programme and opportunities for optimisation and best exploitation of the available beam time, also when fitting into the overall SPS schedule.

| Scenario         | Fraction of time      | Integrated POT     | Years to      | Years to        |
|------------------|-----------------------|--------------------|---------------|-----------------|
|                  | in kaon mode          | in dump mode       | Phase 1 goals | Phase 1+2 goals |
|                  | over HIKE lifetime    |                    |               |                 |
| A                | 100%                  | _                  | 5             | 11              |
| (for comparison) |                       |                    |               |                 |
| В                | 92%                   | 10 <sup>19</sup>   | 6             | 12              |
| С                | 50% in first 8 years, | $5 \times 10^{19}$ | 9             | 15              |
|                  | 100% afterwards       |                    |               |                 |

# **Kaon ID with Cherenkov**

### **Differential Cherenkov detector, refurbished readout**

### K ID for 4x intensity

- Max detected photon rate: >8 MHz/cm<sup>2</sup>
- High granularity
- Single-photon capability with  $\sigma_t$  (Kaon) = 15-20 ps
- $K^+$  tagging efficiency with 4 sectors: > 95%
- Good radiation resistance

### Microchannel plate (MCP) PMTs

- Excellent time resolution (~20 ps)
- Low dark noise, Single-photon sensitivity
- High gain, good QE
- Good filling factor
- Input rate capability ~MHz/cm<sup>2</sup>





### Susceptible to aging (QE drops)

Atomic layer deposition (ALD) coating increases the lifetime dramatically

Simulation results obtained with geometrical filling factor of 75% and collection efficiency of 60% show that 15–20 ps kaon time resolution is achievable

# **Beam TracKer**

|                                                                     | NA62 GigaTracker     | New beam tracker      |
|---------------------------------------------------------------------|----------------------|-----------------------|
| Single hit time resolution                                          | < 200 ps             | < 50 ps               |
| Track time resolution                                               | < 100 ps             | < 25 ps               |
| Peak hit rate                                                       | $2 \text{ MHz/mm}^2$ | 8 MHz/mm <sup>2</sup> |
| Pixel efficiency                                                    | > 99 %               | > 99 %                |
| Peak fluence / 1 year $[10^{14} 1 \text{ MeV } n_{eq}/\text{cm}^2]$ | 4                    | 16                    |

Interest for silicon detectors with fast timing information capable to operate in a high- radiation environment is shared among different experiments, including the LHC experiments for the high luminosity phase of the collider.

# Hybrid 3D-trenched technology can satisfy all requirements.

Pixel electrode geometry optimised

for timing performance. Able to withstand very large

irradiation. Excellent detection efficiencies by operating the sensor inclined by angle 20° wrt beam incidence

### Associated 28nm ASIC: first prototype



TimeSPOT

# **STRAW detector**

NA62 has developed techniques for making state-of-the-art straws by ultrasonic welding

### for 4x intensity

|                                      | Current NA62 spectrometer | New straw spectrometer |
|--------------------------------------|---------------------------|------------------------|
| Straw diameter                       | 9.82 mm                   | 4.82 mm                |
| Straw length                         | 2100 mm                   | 2100 mm                |
| Planes per view                      | 4                         | 8                      |
| Straws per plane                     | 112                       | ~160                   |
| Straws per chamber                   | 1792                      | ~5200                  |
| Mylar thickness                      | 36 µm                     | (12 or 19) µm          |
| Anode wire diameter                  | 30 µm                     | (20 or 30) µm          |
| Total material budget                | $1.7\% X_0$               | $(1.0 - 1.5)\% X_0$    |
| Maximum drift time                   | ~150 ns                   | ~80 ns                 |
| Hit leading time resolution          | (3-4) ns                  | (1-4) ns               |
| Hit trailing time resolution         | ~30 ns                    | ~6 ns                  |
| Average number of hits hits per view | 2.2                       | 3.1                    |





optimised layout for new STRAW detectors





#### Track angular X resolution



# **Pion ID with Cherenkov: RICH detector**

|                                                 | NA62 RICH | HIKE RICH |
|-------------------------------------------------|-----------|-----------|
| Sensor type                                     | PMT       | SiPM      |
| Sensor time resolution                          | 240 ps    | 100 ps    |
| Sensor quantum efficiency                       | 20%       | 40%       |
| Number of hit for $\pi^+$ at 15 GeV/ <i>c</i>   | 7         | 14        |
| Number of hit for $\pi^+$ at 45 GeV/ <i>c</i>   | 12        | 24        |
| Time resolution for $\pi^+$ at 15 GeV/ <i>c</i> | 90 ps     | 27 ps     |
| Time resolution for $\pi^+$ at 45 GeV/ <i>c</i> | 70 ps     | 20 ps     |

| Sensor type                           | Layout | Sensor size                                             | N <sub>Channels</sub> | $\sigma_{\rm Hit}$ | $\sigma_{\text{Radius}}$ |  |
|---------------------------------------|--------|---------------------------------------------------------|-----------------------|--------------------|--------------------------|--|
| Hamamatsu<br>R7400U-03<br>(NA62 RICH) |        | R <sub>Winston</sub> =18 mm<br>R <sub>PMT</sub> =7.5 mm | 1952                  | 4.7 mm             | 1.5 mm                   |  |
|                                       |        | 3x3 mm <sup>2</sup>                                     | 62K                   | 2.3 mm             | 0.66 mm                  |  |
| SiPM                                  |        | 6x6 mm <sup>2</sup>                                     | 16K                   | 2.8 mm             | 0.78 mm                  |  |
|                                       |        | 9x9 mm <sup>2</sup>                                     | 7K                    | 3.4 mm             | 0.95 mm                  |  |

NA62 RICH detector, using neon at atmospheric pressure as the radiator, is well suited for HIKE Major changes only concern the Cherenkov light sensors and flanges hosting them. Opportunity to increase acceptance.







# Large-angle photon vetoes

Time resolution for current NA62 LAVs  $\sim$  1 ns

- Cerenkov light is directional
- Complicated paths to PMT with multiple reflections

#### 12 new large-angle photon veto stations (LAV)

- Sensitive radius 0.85 to 1.5 m
- Time resolution <250 ps</li>
- Hermetic coverage out to 100 mrad
- Need good detection efficiency at low energy
- $(1 \varepsilon < \text{few } 10^{-4} \text{ at at least } 100 \text{ MeV})$
- Full digitization, segmentation in depth

Baseline technology:

Lead/scintillator tile with WLS readout

- Pb/scintillating tile
- WLS fiber readout

Light read out with SiPM arrays



# Hadron Calorimeter

## LATION: TILE RESPONSE

ly **single tile uniformity** and e thickness and cavity lation

f optical photons collected by rack in the tile

point









3.5 mm

6 mm

#### 12 mm

Fig. 1. Schematics of a scintillator tile with an optimized dome-shaped cavity (H and D are the height and diameter of the dome respectively) and an SMD-SiPM (red) completely inside the cavity



### EANT4 SIMULATION: TILE UNIFOR



# **Small-angle photon veto**

- Rejects high-energy  $\gamma$ s from  $K_L \rightarrow \pi^0 \pi^0$  escaping through beam hole
- Must be insensitive as possible to extremely high rate 430 MHz of beam neutrons in K<sub>L</sub> mode
- $\sigma_t < 100 \text{ ps}$
- 2 pulse separation at ~ 1 ns
- Radiation-hardness: 10<sup>14</sup> *n*/cm<sup>2</sup> and 10<sup>5</sup>-10<sup>6</sup> Gy
- · Longitudinal and transverse segmentation for PID

**Possible solution:** 

Compact Cherenkov calorimeter with oriented high-Z crystals

- Optimize choice of photodetectors
  - Excellent time resolution
  - Radiation hardness

- Study response to neutral hadrons
- Possibilities for  $\gamma/n$  discrimination

SAC necessary from Phase 1 but the most stringent requirements for the SAC are for K<sub>L</sub> beam

| Beam comp.    | Rate (MHz) | <b>Req. 1</b> – ε       |
|---------------|------------|-------------------------|
| γ, E > 5 GeV  | 50         | 10 <sup>-2</sup>        |
| γ, E > 30 GeV | 2.5        | <b>10</b> <sup>-4</sup> |
| n             | 430        | -                       |

For HIKE Phase 1, the requirements are slightly less stringent, remnants of the charged beam can be magnetically swept out of acceptance. Still expect rates of up to 10 MHz or more.



# $K^+ \rightarrow \pi^+ l^+ l^-$ Precision measurement

#### [JHEP09 (2022) 148]

 $N_{obs} = 27679$ 

 $a_{+} = -0.575 \pm 0.013$ 

 $b_{+} = -0.722 \pm 0.043$ 

 $BR(K^+ \rightarrow \pi^+ \mu^+ \mu^-) = (9.15 \pm 0.08) \times 10^{-8}$ 

|                                                                                                                                                                           | $\delta a_+$                              | $\delta b_+$                              | $\delta \mathcal{B}_{\pi\mu\mu} \times 10^8$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|
| Statistical uncertainty                                                                                                                                                   | 0.012                                     | 0.040                                     | 0.06                                         |
| Trigger efficiency<br>Reconstruction and particle identification<br>Size of the simulated $K_{\pi\mu\mu}$ sample<br>Beam and accidental activity simulation<br>Background | 0.002<br>0.002<br>0.002<br>0.001<br>0.001 | 0.008<br>0.007<br>0.007<br>0.002<br>0.001 | 0.02<br>0.02<br>0.01<br>0.01<br>—            |
| Flotal systematic uncertainty<br>$K_{3\pi}$ branching fraction<br>$K_{\pi\mu\mu}$ radiative corrections<br>Becometers a and $\ell$                                        | 0.003                                     | 0.013<br>0.003<br>0.009<br>0.006          | 0.03                                         |
| Total external uncertainty                                                                                                                                                | 0.001                                     | 0.000                                     | 0.04                                         |

ΝΑ62 (πμμ)

68% CL contours:

— NA62 (πμμ)

----- NA48/2 (πμμ)

---- NA48/2 (πee)

— E865 (πee) (stat. only)

Form factor parameter  $a_{+}$ 





# $K^+ \rightarrow \pi^+ \gamma \gamma$ Precision measurement

LD dominated, test of Chiral Perturbation Theory, kin. variables  $d\Gamma/(dydz)$  depends on the chiral parameter  $\hat{c}$  + external parameters Measurement of  $BR(K^+ \rightarrow \pi^+ \gamma \gamma)$  and  $\hat{c}$ 

**NA62 recent:** Data RUN 1, ~10% background norm  $K^+ \rightarrow \pi^+ \pi^0$ ,  $\hat{c}$  from  $d\Gamma/(dydz)$ external parameters from  $K \rightarrow 3\pi$  fit  $N_{obs} = 4039 \qquad N_{bkg} = 393 \pm 20$   $\hat{c} = \mathbf{1}.7\mathbf{13} \pm \mathbf{0}.\mathbf{075}_{stat} \pm \mathbf{0}.\mathbf{037}_{syst}$  $BR(K^+ \to \pi^+ \gamma \gamma) = (\mathbf{9}.73 \pm \mathbf{0}.\mathbf{17}_{stat} \pm \mathbf{0}.\mathbf{08}_{syst}) \times \mathbf{10}^{-7}$ 

 $z = \left(\frac{m_{\gamma\gamma}}{m_{\kappa}}\right)^2 \quad y = \frac{P_{\kappa}(Q_{\gamma_1} - Q_{\gamma_2})}{m_{\kappa}^2}$ 

D'Ambrosio, Portoles PLB 386 403 (1996)



HIKE Phase 1: sensitivity to many radiative decays of interest  $K^+ \rightarrow \pi^+ \gamma \gamma$  precision of few per mille

# LNV and LFV tests

Direct search of NP: Majorana neutrino (LNV), Leptonquark (LFV)



Many channels:

- $K^+ \rightarrow \pi^- \mu^+ \mu^+$
- $K^+ \rightarrow \mu^- \nu e^+ e^+$
- $K^+ \rightarrow \pi^- e^+ e^+$
- $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$
- $K^+ \rightarrow \pi^{\mp} \mu^{\pm} e^+$
- $\pi^0 \rightarrow \mu^- e^+$

# NA62: O(10<sup>-11</sup>) on Br of LNV and LFV K<sup>+</sup> decays

### HIKE Phase 1: sensitivity O(10<sup>-12</sup>) or below to LNV and LFV K<sup>+</sup> decays

## Dark Photon Search $A' \rightarrow \mu^+ \mu^-$ in NA62 RUN2

Theory: SM extension in the framework of feebly interacting particle models (FIPs) Parameters: mass  $M_{A'}$ , coupling to SM fields  $\varepsilon$ , If  $M_{A'} < 0.7$  GeV decay to  $l^+l^-$  dominate

NA62: Data taken in dump mode in 2021 (RUN2), exploitation of beam optimization and ANTIO

Analysis: blind analysis, reconstructed A' compatible with production in dump Background from random time superposition of two uncorrelated muons (data-driven estimation)



## **Kaon Experiments at CERN**

HIKE will build on the experience of studying kaon physics at CERN over past four decades



Importance of kaon physics highlighted in the last European Strategy: findings of the last European Particle Physics Strategy Group in the deliberation document **CERN-ESU-014** "**Rare kaon decays at CERN** and KEK" mentioned in Section 4 as "**Other essential activities for particle physics**".

Because of the relatively small number of kaon decay modes and the relatively simple final states, combined with the relative ease of producing intense kaon beams, kaon decay experiments are in many ways the quintessential intensity-frontier experiments.  $_1$ 

 $\bar{\rho}$ 

# Kaon Global Fit

For example, recent paper with global fits to set of kaon measurements Deviation of Wilson coefficients from SM, for NP scenarios with only lefthanded quark currents.



Bounds from individual observables. Coloured regions are 68%CL measurements Dashed lines are 90%CL upper limits





With projections: central value for existing measurements kept the same, A upper bounds extrapolated to central value consistent with SM, B central value of all observables is projected to the best-fit points obtained from fits to existing data 12

| Observable                              | SM prediction                            | Experimental results                       | Ref.       | HIKE projections                  |
|-----------------------------------------|------------------------------------------|--------------------------------------------|------------|-----------------------------------|
| ${ m BR}(K^+ 	o \pi^+ v \bar{v})$       | $(7.86 \pm 0.61) \times 10^{-11}$        | $(10.6^{+4.0}_{-3.5}\pm0.9)\times10^{-11}$ | [144]      | 5% (Phase 1)                      |
| $LFUV(a_+^{\mu\mu} - a_+^{ee})$         | 0                                        | $-0.031 \pm 0.017$                         | [207, 208] | $\pm 0.007$ (Phase 1)             |
| $BR(K_L \rightarrow \mu \mu) (+)$       | $(6.82^{+0.77}_{-0.29})\times10^{-9}$    | $(6.84 \pm 0.11) \times 10^{-9}$           | [209]      | 1% (Phase 2)                      |
| $BR(K_L \rightarrow \mu \mu) (-)$       | $(8.04^{+1.47}_{-0.98})\times10^{-9}$    | $(0.04 \pm 0.11) \times 10$                | [207]      | 1/0 (1 has $2)$                   |
| $BR(K_S \rightarrow \mu \mu)$           | $(5.15 \pm 1.50) \times 10^{-12}$        | $< 2.1(2.4) \times 10^{-10}$ @90(95)% CL   | [210]      | Upper bound kept to current value |
| ${ m BR}(K_L 	o \pi^0 ee)(+)$           | $(3.46^{+0.92}_{-0.80}) \times 10^{-11}$ | $< 28 \times 10^{-11}$ @90% CI             | [211]      | 20% (Phase 2)                     |
| ${ m BR}(K_L 	o \pi^0 ee)(-)$           | $(1.55^{+0.60}_{-0.48})\times10^{-11}$   |                                            | [211]      | 2070 (I hase 2)                   |
| $\mathrm{BR}(K_L \to \pi^0 \mu \mu)(+)$ | $(1.38^{+0.27}_{-0.25})\times10^{-11}$   | $< 38 \times 10^{-11}$ @90% CI             | [212]      | 20% (Phase 2)                     |
| $\mathrm{BR}(K_L \to \pi^0 \mu \mu)(-)$ | $(0.94^{+0.21}_{-0.20})\times10^{-11}$   | < 50 × 10 € 90 /0 CL                       | [212]      | 2070 (1 hase 2)                   |



## **Estimated cost for detectors**

| Detector                       | Group                          | Cost (MCHF) |
|--------------------------------|--------------------------------|-------------|
| Kaon ID (KTAG)                 | UK                             | 0.5         |
| Beam tracker                   | Italy, CERN, UK,               | 3           |
|                                | Belgium, Canada, France        |             |
| Charged particle veto (CHANTI) | Switzerland                    | 0.4         |
| Veto counter (VC)              | Switzerland                    | 0.3         |
| ANTI-0                         | Germany                        | 0.4         |
| Large Angle Vetos (LAV)        | UK                             | 8           |
| STRAW                          | CERN, Kazakhstan,              | 3.5         |
|                                | Slovakia, Czech Republic       |             |
| Main calorimeter               | Italy                          | 5           |
| Small Angle Calorimeter (SAC)  | Italy                          | 2           |
| Pion ID (RICH)                 | Italy, Mexico                  | 0.8         |
| Timing detector                | Belgium                        | 0.4         |
| HCAL                           | Germany                        | 1.5         |
| Muon plane                     | Germany                        | 0.2         |
| HASC                           | Romania                        | 0.2         |
| DAQ, computing                 | CERN, Italy, Spain, Mexico, US | 1.3         |
| Total                          |                                | 27.5        |

## **NA62: Limitations**





#### The NA62 decay-in-flight technique is now well established!



Nominal intensity:  $\sim 3 \times 10^{12} \text{ POT/spill} \rightarrow 750 \text{ MHz}$  hadron beam

#### **Primary beam:**

- 400 GeV CERN SPS protons Secondary hadron beam:
- $K^{+}(6\%) / \pi^{+}(70\%) / p(24\%)$
- $p = 75 \text{ GeV}, \Delta p/p \sim 1\%$
- 60 × 30 mm<sup>2</sup> transverse size **Decay region:**
- 60 m long fiducial volume
- Vacuum ~  $O(10^{-6} \text{ mbar})$
- $\sim 5 \text{ MHz K}^+$  decay rate



#### JHEP 06 (2021) 093

35

### **2018 data:**

| Background          | Subset S1                       | Subset S2                       |
|---------------------|---------------------------------|---------------------------------|
| $\pi^+\pi^0$        | $0.23\pm0.02$                   | $0.52\pm0.05$                   |
| $\mu^+ u$           | $0.19\pm0.06$                   | $0.45\pm0.06$                   |
| $\pi^+\pi^-e^+ u$   | $0.10\pm0.03$                   | $0.41\pm0.10$                   |
| $\pi^+\pi^+\pi^-$   | $0.05\pm0.02$                   | $0.17\pm0.08$                   |
| $\pi^+\gamma\gamma$ | < 0.01                          | < 0.01                          |
| $\pi^0 l^+  u$      | < 0.001                         | < 0.001                         |
| Upstream            | $0.54\substack{+0.39 \\ -0.21}$ | $2.76\substack{+0.90 \\ -0.70}$ |
| Total               | $1.11\substack{+0.40\\-0.22}$   | $4.31\substack{+0.91 \\ -0.72}$ |



**Observed:** 17 K<sup>+</sup>  $\rightarrow \pi^+ \nu \bar{\nu}$  candidates!



### NA62 recommended by SPSC and approved by Research Board until LS3

### **Improvements in NA62 Run2:**

- DAQ stability improved: run at higher beam intensity  $(70\% \rightarrow 100\%)$
- Rearrangement of beamline elements around GTK achromat
- Added 4<sup>th</sup> station to GTK beam tracker
- Additional veto counters around beam pipe (both upstream/downstream the FV)
- New veto hodoscope upstream of decay volume (ANTI0)
- New hydrogen-filled Kaon identification detector (CEDAR-H) to reduce material along the beam line (since 2023)

New ANTI0



New upstream veto



New downstream veto



New CEDAR-H

