

Searches for new phenomena in final states with taus using the ATLAS detector

17th International Workshop on Tau Lepton Physics (TAU2023)

4 - 8 December 2023 ~ Louisville, Kentucky - USA

Alma Mater Studiorum UNIVERSITÀ DI BOLOGNA

Giuseppe Carratta,

University and INFN - Bologna on behalf of the ATLAS Collaboration

Introduction

The **Standard Model** of particle physics has been verified to high precision. **Despite its success**, several **observations** have been made which have **exposed the theory's shortcomings** in various aspects and fostered new theoretical ideas.

Many theories **Beyond the SM predict new phenomena** in final states with isolated, high- $p_T \tau$ -leptons. Searches with these signatures, produced either **resonantly or non-resonantly**, are performed by the **ATLAS** Collaboration.

In this talk we will explore searches in several scenarios:

- Higgs
- Leptoquarks
- Vector-like leptons

Giuseppe Carratta

- SUSY
- Lepton Flavour Violation
- Dark matter

Introduction - II

physics models: Large Hadron Collider (LHC)

LHC is the biggest ever particle accelerator:

- Reached a **center-of-mass energy** of $\sqrt{s} = 13$ TeV
- Delivered an **integrated luminosity** up to 156 fb⁻¹ in Run 2

LHC hosts four big experiments: ALICE, LHCb, CMS, **ATLAS**.

Giuseppe Carratta

ATLAS (A Toroidal LHC ApparatuS) is a multipurpose experiment to discover signatures of new physics and to perform precise measurements of Standard Model.

ATLAS recorded 140 fb^{-1} good for **physics** analyses in Run 2.

Phenomenology and signatures

ATLAS reconstructs several **particles according** to their **different interactions** with materials

• Recurrent neural network (**RNN**) used to **discriminate** the visible **decay products of the** τ_{had} candidates from jets initiated by quarks or gluons.

Giuseppe Carratta

- Electrons or muons (usually tagged as τ_{lep})
- Missing energy transverse
- Jets (usually tagged as τ_{had}), dedicated reconstruction using
 - seeds from anti- k_T jets, remaining independent thereafter

Events from:

• **Irreducible background** (From SM processes) • **Reducible background** (Fake and charge mis-identified taus)

Contents of the talk

- $H \to \tau \tau + E_T^{miss}$, in **JHEP09(2023)189**
- $HH \rightarrow bb\tau\tau$, in **ATLAS-CONF-2023-071**
- $X \rightarrow SH \rightarrow VV\tau\tau$, in **JHEP10(2023)009**
- VLL in a doublet model, in **JHEP07(2023)118**
- $LQ \to b\tau$, in **JHEP10(2023)001**
- $LQLQ \rightarrow b\tau b\tau$, in **EPJC 83(2023)1075**
- Excited *τ*-leptons, in **JHEP06(2023)199**
- LFV $Z' \rightarrow \ell \ell'$, in **JHEP10(2023)082**
- EW SUSY, in **ATLAS-CONF-2023-029**

Giuseppe Carratta

 $H \to \tau \tau + E_T^{miss}$

- **Dark matter** searches in signature with $h + E_T^{miss}$
- Model-independent topology, reinterpretations: 2HDM+a, DM, Z', 2D parameter scan.
- Most discriminating observables: $m_{vis}(\tau, \tau)$, $\Delta R(\tau, \tau)$, m_T^{tot} .
- Signal regions defined for different mass-hypotheses of m_A , binned in transverse mass of τ -leptons $m_T^{\tau_1} + m_T^{\tau_2}$
- **Control regions** to study the main backgrounds from SM events: Z and **multiboson production**, tt.
- **Data driven technique** (fake-factor) to estimate fake taus, parametrized in p_T , η , number of tracks and jet origin.

Giuseppe Carratta

$H \rightarrow \tau \tau + E_T^{miss}$

the predicted number of events

Giuseppe Carratta

JHEP09(2023)189

$HH \rightarrow bb\tau\tau$

- Search for the **non-resonant** production of **Higgs boson pairs** in the $HH \rightarrow bb\tau\tau$
- **Dedicated regions** defined to account for **ggF** and **VBF** production modes.
- Different selections (including triggers) depending on the di- τ decay modes ($\tau_{had}\tau_{had}$, $\tau_{had}\tau_{lep}$)
- MVA approach exploited to categorize events after the preselection

Giuseppe Carratta

ATLAS-CONF-2023-071

$HH \rightarrow bb\tau\tau$

• Statistical fit performed simultaneously on 9 SRs (BDT score as fitting variable) and 1 CR (m_{ee}).

Main uncertainties:

- Signal and background modeling (theoretical)
- MC statistics

Likelihood contours in the

Giuseppe Carratta

ATLAS-CONF-2023-071

No excess above the SM

expectation is observed

(k_{λ}, k_{2V}) parameter space

Expected and observed 95%

$X \to SH \to VV\tau\tau$

- **Search** based on **signature** $X \to SH \to VV\tau\tau$
- **Provided interpretations** including: 2HDM, 2HDM+S, MSSM, NMSSM
- Analysis focused on the most sensitive final states: $1\ell 2\tau_{had}$, $2\ell 2\tau_{had}$.
- **Three** Signal regions defined depending on the $S \rightarrow VV(WW_{had}, WW, ZZ_{had} \text{ and } ZZ)$ decays.
- Main discriminating observables:
 - $\Delta R(\tau_1, \tau_2)$
 - number of *b*-jets
 - RNN taus.
- **Parameterized BDT** (in m_X for given m_S) is used to separate the signal from the background in each signal region.
- A total of **12 BDTs** are trained

Giuseppe Carratta

Main backgrounds:

• Fake au_{had} (data-driven) • Diboson, ttV/H

$X \to SH \to VV\tau\tau$

• A **binned likelihood fit** is performed in all the signal regions using **BDT distribution as input**

Main uncertainties:

- MC modelling
- τ identification & fake τ modelling
- Data statistical uncertainty

2D upper limits as a function of m_X **and** m_S

Giuseppe Carratta

JHEP10(2023)009

No excess is observed from the data

VLL in a doublet model

- Search for VLL in multilepton final states with 0 or more τ_{had}
- VLL in a doublet model introduces **two fermions** $L' = (\nu'_{\tau}, \tau')$, which are assumed to be **degenerate in mass**
- **BDT** used to maximize signal efficiency vs. background rejection (including fakes). 7 BDTs (one for each SR) trained looking for different leptons multiplicities and leptons charge

Variables	BDT Training Regions							
BDT	$ $ 2 ℓ SSSF, 1 τ	2ℓ SSOF, 1τ	2ℓ OSSF, 1τ	2ℓ OSOF, 1τ	$2\ell, \geq 2\tau$	$3\ell, \geq 1\tau$	$4\ell,\geq 0\tau$	
N_ℓ	2	2	2	2	2	3	≥ 4	
Charge/flavour	SSSF	SSOF	OSSF	OSOF				
$N_{ au}$	1	1	1	1	≥ 2	≥ 1	≥ 0	
$E_{\rm T}^{\rm miss}~[{ m GeV}]$	≥ 120	≥ 90	≥ 60	≥ 100	≥ 60	≥ 90	≥ 60	

• **Four Control regions** are used to constrain the dominant backgrounds: $t\bar{t} + Z$, diboson (mainly WZ and ZZ); fake τ_{had} (estimated through a data-driven technique)

Giuseppe Carratta

q	$\nu'_{ au}$
	$Z_{\overline{\nu}'}$
$ar{q}$	

VLL in a doublet model

and **pre-fit yields for signal** modelling

Main uncertainties from:

Normalization factors extrapolations & fakes estimation Analysis dominated by statistical uncertainty

Giuseppe Carratta

JHEP07(2023)118

• **Observed** mass range from 130 to 900 GeV is excluded at 95% CL

$\rightarrow b\tau$

- Search for third generation LQ into $b\tau\tau$ final states, including also LQ pair and nonresonant production due to similar final states.
- **Two channels** are considered: $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ (ad-hoc selection for each of them)
- **Three interpretations** provided by the analysis:
 - Interpretation for **vector** and **scalar LQ** in **high b-jet** p_T category
 - **Model-independent** interpretation in **low** and **high b-jet** *p*_T categories
 - LQ interpretation considering both low and high b-jet p_T categories
- Scalar sum (S_T) of taus and *b*-jet p_T used as discriminant variable

Giuseppe Carratta

6 December 2023

🚿 Uncerta 800 1000 S_{T} [GeV]

Clear mis-modelling in the Top CR ($\tau_{lep}\tau_{had}$) depending on S_T , corrected by a dedicated SF:

$$SF_{\text{Top}}(S_{\text{T}}) = rac{(N_{\text{data}} - N_{\text{non-Top}})(S_{\text{T}})}{N_{\text{Top}}(S_{\text{T}})}$$

Low *b*-jet p_T : 25 GeV < $p_T(b$ -jet) < 200GeV**High** *b*-jet $p_T: p_T(b-jet) > 200 GeV$

JHEP10(2023)001

14

$\rightarrow b\tau$

Main backgrounds:

- $t\bar{t}$ and single top events
- Fake τ ($\tau_{lep}\tau_{had}$) & multi-jet ($\tau_{had}\tau_{had}$, data-driven)
- Main uncertainties:

- MC statistics • Top background modeling • Fake τ correction

• Z + light flavour jets ($\tau_{had} \tau_{had}$)

Observed and predicted yields of the background as a function of S_T threshold used to define SRs.

Giuseppe Carratta

This **analysis sets ULs** at 95% CL for LQ via either single plus non-resonant production, or considering all production modes.

- For a **Yang-Mills coupling of 2.5**, the observed lower limit of LQ mass is 2.05 TeV.
- Model-independent scenario: limits on σ_{vis} vary between 0.17 fb and $4.8 \cdot 10^{-2}$ fb.

$QLQ \rightarrow b\tau b\tau$

- Search focusing on third generation LQ pair production. Both LQs decay into b-quark and τ -lepton.
- In analogy with the previous analysis, **two channels** are considered:
 - $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$, event selection is optimized for each channel
- A common selection is applied requiring OS leptons, $E_T^{miss} > 100$ GeV and $S_{T} > 600 \text{ GeV}$
- A parameterised neural network (PNN) is used to search for a LQ-pair into two Signal regions

Main backgrounds:

- Z + heavy flavour jets
- Diboson
- *tt* and single top (similar correction of $LQ \rightarrow b\tau$ analysis)
- Fake taus

EPJC 83(2023)1075

pLO

$LQLQ \rightarrow b\tau b\tau$

• Analysis dominated by statistical uncertainties. **Main systematics** due to fakes estimation, $t\bar{t}$ and single top

modeling and normalization.

No significant excess over expectation is observed.

Exclusion limits at 95% CL are set for different LQ scenario and BRs:

- 100% BR:
 - Scalar LQ excluded for masses below 1460 GeV
 - LL for **Vector LQs** in the **minimal-coupling** scenario set at 1650 GeV
 - LL for **Vector LQs** in the **Yang-Mills** scenario set at 1910 GeV
- BR < 10%:
 - Scalar LQ excluded for masses below 850 GeV
 - LL for **Vector LQs** in the **minimal-coupling** scenario set at 1120 GeV
 - LL for **Vector LQs** in the **Yang-Mills** scenario set at 1360 GeV

Giuseppe Carratta

EPJC 83(2023)1075

Excited τ -leptons

- Search for excited τ -leptons and LQs in events with 2 τ_{had} and at least 2 jets
- According to some models, SM quarks and leptons, could be composed by particles called *preons*. They predict the existence of excited states towering over the known SM leptonic and quark ground states.
- This analysis uses an effective four-fermion contact interaction (CI).

Main backgrounds:

- Leptonic decay of Z
- $t\bar{t}$ and single top
- Fake taus (fake-factor)

Main systematics:

- $t\bar{t}$ and tW theory (Matrix Element & Parton Shower)
- Fakes estimation

• Excited τ -leptons with masses below 2.8 (4.6) TeV are excluded at 95% CL for CI scale Λ set to 10 TeV (m_{τ^*}).

LQs with masses **below 1.3 TeV** are excluded at 95% CL, for $BR(LQ \rightarrow c\tau) = 1$

Giuseppe Carratta

JHEP06(2023)199

No excess of data over the background prediction is observed.

LFV $Z' \rightarrow \ell \ell'$

- **Evidence of charge LFV** could lead to **physics BSM**.
- Analysis results interpreted in terms of: LFV Z', Quantum Black Hole and R-Parity Violating SUSY.
- Three channels considered: $e\mu$, $e\tau_{had}$ and $\mu\tau_{had}$ with opposite charge and zero b-jets.
- Analysis regions definition driven by $m_{\ell\ell'}$ values: above 600 GeV SR, below 600 GeV CR and VR.

Main backgrounds:

- Leptonic decay of Z
- $t\bar{t}$ and single top
- Fake light-leptons (fake-factor) τ -leptons (Reco, ID, isolation)
- Fake taus (MC extrapolation)

Main uncertainties:

- Backgrounds modeling (channels with μ)

Different lower limit on the mass, at 95% CL are set by the analysis depending on the considered scenario.

Model	Observed (expected) 95% CL lower limit [TeV]				
	$e\mu$ channel	e au channel	μau channel		
LFV Z'	5.0(4.8)	4.0(4.3)	3.9(4.2)		
RPV SUSY $\tilde{\nu}_{\tau}$	3.9(3.7)	2.8(3.0)	2.7(2.9)		
QBH ADD $n = 6$	5.9(5.7)	5.2 (5.5)	5.1 (5.2)		
QBH RS $n = 1$	3.8 (3.6)	3.0(3.3)	3.0(3.1)		

Giuseppe Carratta

JHEP10(2023)082

• **LFV is forbidden in the SM**, but neutrino oscillations have shown that lepton flavour is not a conserved symmetry of nature.

• **Statistical uncertainty dominant** in every channel.

EW SUSY

- Analysis targeting Electroweak SUSY production with τ_{had} in the final state.
- Three different signal models are considered:

Direct Stau (\tilde{\tau}) production

Intermediate Stau *Chargino-neutralino production also considered

- **Different SRs** are defined **to target** the **specific SUSY** scenario.
- The most important discriminating observables are: transverse mass of two leptons (or 1 lepton and E_T^{miss}), $\Delta R(\tau_1, \tau_2), m(\tau_1, \tau_2) \text{ and } \Delta \phi(\tau_1, \tau_2).$
- For the **direct stau production**, 4 **BDTs** are trained to define as many SRs.

Giuseppe Carratta

ATLAS-CONF-2023-029

Intermediate Wh bosons

Using a simplified model: • $BR\left(\tilde{\tau} \to \tilde{\chi}_1^0 \tau\right) = 100\%$

Main backgrounds:

- Z/W + jets
- Top quarks events
- Multiboson

EW SUSY

- Analysis **dominated by statistical uncertainty** in every channel
- τ -leptons (Reco, ID, isolation) and JES, JER have an important impact in some regions

Direct stau channel achieved a first sensitivity to right-handed staus

Giuseppe Carratta

ATLAS-CONF-2023-029

Observe no excesses above SM prediction.

Exclusion limits at 95% CL are set on the different models:

- **Direct stau**: mass-degenerate $\tilde{\tau}_{L,R}$ excluded up to 480 GeV.
- Intermediate stau: chargino masses are excluded up to 970 GeV, while $\tilde{\chi}_1^+$ and $\tilde{\chi}_2^0$ masses up to 1160 GeV
- **Intermediate** *Wh*: excluded $\tilde{\chi}_1^+$ and $\tilde{\chi}_2^0$ masses up to 330 GeV

Conclusions

- Several BSM scenarios are covered by the ATLAS Collaboration in **many different** final states and **topologies**.
- No significant deviations from the SM have been observed, but there is growing evidence for anomalies in lepton interactions
- Channels with **3rd generation fermions** are very **sensitive** to **New Physics** and can lead to evidence of it
- Due to their fundamental importance, **ATLAS is pushing the search** for new phenomena in **lepton interactions on several fronts**
- Innovative techniques are used to improve the sensitivity of the **analyses**, both on objects reconstruction and signal vs. backgrounds discrimination

During Run 3 we will collect a lot of new data, and we are very excited to see the future results!

Giuseppe Carratta

Giuseppe Carratta

BACKUP

Giuseppe Carratta

$\tau^+ \tau^-$: $\tau_{had} \tau_{had}$ and $\tau_{lep} \tau_{had}$

7.3% BR and one of the 3 most sensitive analysis channels

Ę

Tau leptons reconstruction

Medium, Tight).

Giuseppe Carratta

$HH \rightarrow bb\tau\tau$

Giuseppe Carratta

HDBS-2019-27

Variable	$ au_{ m had} au_{ m had}$	$ au_{ m lep} au_{ m had}~ m SLT$	$ au_{ m lep} au_{ m had}$ LTT	
$m_{jj}^{ m VBF}$	✓	1	1	
$\Delta \eta_{jj}^{ m VBF}$	1	\checkmark	\checkmark	
VBF $\eta_0 \times \eta_1$	✓	\checkmark		
$\Delta \phi^{ m VBF}_{jj}$	1			
$\Delta R^{ m VBF}_{jj}$		\checkmark	\checkmark	
$\Delta R_{\tau\tau}$	1			
m _{HH}	1			
f_2^a	✓			
C^{a}		1	\checkmark	
$m^a_{ m Eff}$		\checkmark	\checkmark	
f_0^c		\checkmark		
f_0^a			\checkmark	
h_3^a			\checkmark	

Process	Generator		PDF set		Tune	Normalisation
	${ m ME}$	\mathbf{PS}	${ m ME}$	\mathbf{PS}		
$LQ \rightarrow b\tau$	$MadGraph5_aMC@NLO$	Рутніа 8.244	NNPDF3.0nnlo	NNPDF2.3lo	A14	LO
Scalar LQLQ $\rightarrow b\tau b\tau$	$MadGraph5_aMC@NLO$	Pythia 8.230	NNPDF3.0nnlo	NNPDF2.3lo	A14	NNLO + NNLL
Vector LQLQ $\rightarrow b\tau b\tau$	$MadGraph5_aMC@NLO$	Рутніа 8.244	NNPDF3.0nnlo	NNPDF2.3lo	A14	LO
$tar{t}$	Powheg Box v2	Рутніа 8.230	NNPDF3.0nnlo	NNPDF2.3lo	A14	NNLO + NNLL
Single top	Powheg Box v2	Рутніа 8.230	NNPDF3.0nnlo	NNPDF2.3lo	A14	NLO
Z/γ^*	POWHEG BOX v1	Рутніа 8.186	CT10nlo	CTEQ6L1	AZNLO	NLO
$W{+}\mathrm{jets}$	${ m Sherpa}2.2.1$		NNPDF3.0nnlo		Sherpa	NNLO
Diboson	m Sherpa2.2.1/Sherpa2.2.2		NNPDF3.0nnlo		Sherpa	NLO

Table 1. Overview of the MC generators used for the main signal and background samples. The last column specifies the order in QCD for the cross-section calculation used for the normalisation of the simulated samples.

Recent measurements of differential cross-sections have demonstrated that the current simulations of $t\bar{t}$ processes overestimate the upper tail of the top-quark p_T spectrum: see <u>1</u> & <u>2</u>.

Giuseppe Carratta

JHEP10(2023)001

EW SUSY

Chargino-neutralino production

Giuseppe Carratta

ATLAS-CONF-2023-029

