

von Universum

Bundesministerium für Bildung und Forschung

universität freiburg

Measurements of Higgs boson properties in decays to two τ leptons and search for lepton-flavor-violating Higgs boson decays into τ leptons using the ATLAS detector

> Ö. Oğul Öncel (University of Freiburg) on behalf of the ATLAS Collaboration

TAU2023 International Workshop Louisville, KY, USA - 6 December 2023

Higgs Boson Production at the Large Hadron Collider

- The center-of-mass collision energy at LHC during Run-2 (2015-2018) was \sqrt{s} = 13 TeV
- Standard Model (SM) Higgs boson is produced (~ 8x10⁶ at Run-2) via 4 major processes at the LHC

- $H \rightarrow \tau \tau$ decay channel is first observed in 2018^[1] and it has the strongest Yukawa coupling (κ_{τ}) to leptons
- It provides a compromise between a reasonable branching ratio (~6%) and signal discrimination performance

 $Z \rightarrow \tau \tau$ is the dominant background (~500 times larger production rate)

Jet

- Algorithms combine & process information from subsystems to identify and reconstruct the particles
- Neutrinos escape the detector, visible transverse momentum imbalance ($E_{\rm T}^{\rm miss}$) is used as a proxy

ATLAS

Content

- · Very simplified description of analysis details and results
- For more: Backup, links or offline in-person

Some other related ATLAS results:

 $H \rightarrow \tau \tau$ measurements and searches with the ATLAS detector | Ö. O. Öncel (Freiburg & ATLAS) | TAU2023 International Workshop | 06 December 2023 | ogul.oncel@cern.ch

Goal: measure the σ x BR of V(ℓ)H($\tau\tau$) production, one of the major Higgs production modes. V(ℓ)H($b\bar{b}$) observed^[1] in 2018

• $V = \{W, Z\}$ production modes with decays into light leptons ($\ell = e \text{ or } \mu$) \rightarrow Ambiguities due to multiple ℓ/ν sources

Assign leading $p_T ~\ell'$ to V decays and require opposite-sign $au_{
m lep} au_{
m had}$ / $au_{
m had} au_{
m had}$

Suppress Z+jets in $au_{
m lep} au_{
m had}$ channel by requiring 2 same-sign ℓ

Enhance *H* sensitivity with a mass-window of 60/80 < M_{2T} < 130 GeV \rightarrow Multiple (*H* & *W*) neutrino sources

Select Z bosons with requiring 81/71 < $m_{\ell^+\ell^-}$ < 101/111 GeV \rightarrow 3 ℓ in $\tau_{\text{lep}}\tau_{\text{had}}$. Assign largest p_T^{ℓ} with best m_Z

Enhance *H* sensitivity with a mass-window of $100 < m_{MMC} < 170/180$ GeV

Evidence for VH, H \rightarrow \tau \tau Process - Signal Extraction and Background Estimation

Neural Networks (NN) are used (Run-1: no MVA) to separate signal from the dominant diboson (VV = WZ, ZZ) backgrounds

- One NN is trained in each channel, except $W\!H\! au_{
 m lep} au_{
 m had}$, which has three: ee, $e\mu$ and $\mu\mu$
- Misidentified jets are estimated using the data-driven Fake-Factor method

Four signal region NN distributions are used in a binned profile likelihood fit to extract the parameter of interest (PoI) $\mu_{VH}^{\tau\tau} = \frac{\sigma}{\sigma_{SM}}$

- No control regions in the fit → Thorough checks are done to validate the background modelling
- Main results from 1 Pol fit: $\mu_{VH}^{\tau\tau} = \mu_{WH}^{\tau\tau} = \mu_{ZH}^{\tau\tau} = 1.28^{+0.39}_{-0.36}$ (2 Pol fit: $\mu_{WH}^{\tau\tau} = 1.48^{+0.56}_{-0.50}$ and $\mu_{ZH}^{\tau\tau} = 1.09^{+0.51}_{-0.44} \rightarrow \text{compatible}$)

Source of uncertainty	$\delta \mu / \mu_{ m VH}^{ au au}$ [%]
Hadronic τ -lepton decay	10
Background sample size	9
Misidentified jets	5
Jet and $E_{\rm T}^{\rm miss}$	5
Theoretical uncertainty in signal	5
Theoretical uncertainty in top-quark, VV and VVV processes	4
Electrons and muons	2
Luminosity	1
Flavour tagging	< 1
Total systematic uncertainty	17
Total statistical uncertainty	24
Total	29

Four signal region NN distributions are used in a binned profile likelihood fit to extract the parameter of interest (PoI) $\mu_{VH}^{\tau\tau} = \frac{\sigma}{\sigma_{SM}}$

- No control regions in the fit → Thorough checks are done to validate the background modelling
- Main results from 1 Pol fit: $\mu_{VH}^{\tau\tau} = \mu_{WH}^{\tau\tau} = \mu_{ZH}^{\tau\tau} = 1.28^{+0.39}_{-0.36}$ (2 Pol fit: $\mu_{WH}^{\tau\tau} = 1.48^{+0.56}_{-0.50}$ and $\mu_{ZH}^{\tau\tau} = 1.09^{+0.51}_{-0.44} \rightarrow \text{compatible}$)

H \rightarrow τ τ measurements and searches with the ATLAS detector | Ö. O. Öncel (Freiburg & ATLAS) | TAU2023 International Workshop | 06 December 2023 | ogul.oncel@cern.ch

Higgs $\rightarrow \tau \tau$ **Decay CP** - **Motivation & Strategy**

According to Sakharov Conditions^[1], new sources of CP-violation might explain the baryon asymmetry in the universe

• CP-mixing alters the transverse-spin correlations between τ -particles \rightarrow changes carried over to the τ -decay products

 $au_{
m lep} au_{
m had}$ and $au_{
m had} au_{
m had}$ final states are broken down to further regions according to decay modes and topologies

- 8 (4 regions x 2 final states) inclusive SRs have 8 corresponding $Z \rightarrow \tau \tau$ CRs. +2 Z CRs to constrain π^0 energy resolution
- SRs are further split into 3 subregions of increasingly optimised ϕ^*_{CP} sensitivity (low/medium/high)

BDT = Boosted Decision Tree, optimized^[1] to tag VBF events

Higgs $\rightarrow \tau \tau$ **Decay CP** - **Results**

CMS Result: JHEP 06, 012 (2022)

Using $\phi_{ au}$ as the PoI, a binned profile likelihood fit is evaluated using all signal and control regions

• Analysis is statistically limited, among systematics, Jet Energy Scale/Resolution had the highest impact on ϕ_{τ} with $3.4^{\circ}/2.5^{\circ}$

SM Higgs normalization is left unconstrained \rightarrow Using only the shape

 $\phi_{\tau}^{\text{obs.}}$ $(\phi_{\tau}^{\text{exp.}}) = 9 \pm 16^{\circ} (0 \pm 28^{\circ})$ Pure CP-odd hypothesis is rejected with 3.4 σ (CMS: 3 σ)

Agreement with SM within 1σ No strong correlations observed

First ATLAS result

Search for Lepton-Flavour-Violation (LFV) in H $\rightarrow e\tau$ & H $\rightarrow \mu\tau$ decays (p_T^{ℓ} ordered)

- ℓ , τ_{lep} and ℓ , τ_{had} channels are further split into VBF ($N_j > 2$) & non-VBF regions
- Misidentified objects: data-driven Fake-Factor or ABCD methods

Higgs $\rightarrow \ell \tau$ LFV Search - Strategy & Backgrounds

• MC Template (Symmetry) method is used to estimate $Z \rightarrow \tau \tau$ & Top (All) SM backgrounds

H → τ τ measurements and searches with the ATLAS detector | Ö. O. Öncel (Freiburg & ATLAS) | TAU2023 International Workshop | 06 December 2023 | ogul.oncel@cern.ch

 $\tau_{\text{lep}}, \tau_{\text{had}}$

Η

H = {*ggF*, *VBF*, *VH*}

 ℓ, q

 $\bar{\nu_{\ell'}}, \bar{q}$

- Estimate backgrounds in a channel ($e\tau/\mu\tau$) using the data events from the selection of the other channel ($\mu\tau/e\tau$)
 - Assumption 1: $e \longleftrightarrow \mu$ exchange is symmetric in SM background processes
 - Assumption 2: LFV signal processes are asymmetric i.e. BR(H $\rightarrow e\tau$) \neq BR(H $\rightarrow \mu\tau$). Method is sensitive to Δ BR
 - Asymmetries originating from instrumental effects (detector efficiency, fake rates) has to be corrected

Higgs $\rightarrow \ell \tau$ LFV Search - Results

[1] Phys. Lett. B 800 (2020) 135069[2] Phys. Rev. D 104 (2021) 032013

★New

Taking LFV decay BRs as Pols, 1 Pol (SYM+MCT) and 2 Pol (MCT) binned profile likelihood fits are performed on SRs + CRs

• Analysis is systematically limited, background sample size & misidentified background uncertainties are dominant

- First evidence (4.2 σ) for V(ℓ)H($\tau\tau$) production (NNs, x7 data)
- Decay CP angle $\phi_{\tau}^{\text{obs.}} = 9 \pm 16^{\circ}$ consistent with the SM within 1 σ (First ATLAS result)
- Stringest LFV BR(H $\rightarrow e\tau$) = 0.2% @ 95%CL, 2 σ overall compatibility with SM (x4 data, 2Pol fit, NNs)

Thank you for your attention!

Backup

universität freiburg

LHC and ATLAS

universität freiburg

Image Credit: CERN

Reconstruction: Anti-kt jet algorithm, R=0.4 Prong count by defining core and isolation tracks using BDTs with tracks with dR=0.4 of tau axis Using: pT, tracker hits, impact parameters Number of core tracks give the prongness

Energy calibration:

Apply pile-up and energy cluster correction to objects within R=0.2 of the tau candidate Use corrected energy with a boosted regression tree to calculate final energy

	Signal efficiency		Background rejection BDT		Background rejection RNN	
Working point	1-prong	3-prong	1-prong	3-prong	1-prong	3-prong
Tight	60%	45%	40	400	70	700
Medium	75%	60%	20	150	35	240
Loose	85%	75%	12	61	21	90
Very loose	95%	95%	5.3	11.2	9.9	16

LSTM (Long Short-Term Memory)

ATLAS - Tau Identification in ATLAS

ATLAS - MMC

- Accounts for the kinematic constraints while considering the variation of energy and position of the particles in the decay cascades over the allowed phase space.
 - Assumes neutrinos are the only $E_{\rm T}^{\rm miss}$ source.
 - For each event, scan over possible configurations of the visible and invisible τ -decay products is performed in a Markov chain.
 - For each kinematic configuration, the final weight is defined as a log-likelihood of its total probability.
- The solution with the highest likelihood and largest weight is set as a final estimator of m_H .

Figure: Example of the probability distribution functions $P(\Delta R, p_{\tau})$ [3] at a particular p_{τ} .

https://indico.cern.ch/event/796574/contributions/3521687/attachments/1917917/3172786/ The_status_of_Missing_Mass_Calculator_for_Higgs_boson_mass_estimation_in_the_ATLAS_H___analysis18.pdf

VH

universität freiburg

Process	MC Generator + UEPS	PDF Set	Perturbative Order
Signal			
$W \to \ell \nu, H \to \tau \tau$	Powheg [21–25]+Pythia8.235 [31]	PDF4LHC15NLO [37]	NLO
$Z \to \ell \ell, H \to \tau \tau$	Powheg+Pythia8.235	PDF4LHC15NLO	NLO
Background			
ggF $H \rightarrow \tau \tau$	Powheg+Pythia8.235	PDF4LHC15NLO	NNLO
VBF $H \rightarrow \tau \tau$	Powheg+Pythia8.235	PDF4LHC15NLO	NLO
$t\bar{t}H, H \to \tau\tau$	Powheg+Pythia8.235	NNPDF30NNLO [36]	NLO
Diboson	Sherpa 2.2.2 [32]	NNPDF30NNLO	NNLO
Triboson	Sherpa 2.2.2	NNPDF30NNLO	NNLO
V + jets	Sherpa 2.2.1 [32]	NNPDF30NNLO	NNLO
Single-top	Powheg+Pythia8.230	NNPDF30NLO	NLO
tī	Powheg+Pythia8.230	NNPDF30NLO	NLO

Table 2: PRESELECTION and SIGNAL REGION selection for the four categories. "OS" stands for opposite-sign, "SS" for same-sign and "ID" for identification.

Selection	WH, $H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	WH, $H \rightarrow \tau_{\rm had} \tau_{\rm had}$	$ZH, H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$ZH, H \rightarrow \tau_{\rm had} \tau_{\rm had}$
Preselection	exactly 1 $\tau_{had-vis}$ exactly 2 ℓ <i>b</i> -jet veto	exactly 2 $\tau_{had-vis}$ exactly 1 ℓ <i>b</i> -jet veto	exactly 1 $\tau_{had-vis}$ exactly 3 ℓ same-flavour, OS ℓ pair $m_{\ell\ell} \in [81, 101]$ GeV	exactly 2 $\tau_{had-vis}$ exactly 2 ℓ same-flavour, OS ℓ pair $m_{\ell\ell} \in [71, 111]$ GeV
Signal Region	$\begin{array}{c} 1 \ \tau_{\text{had-vis}} \ \text{and} \ 1 \ \tau_{\text{lep}} \ \text{OS} \\ \text{exactly} \ 2 \ \ell \ \text{SS} \\ \sum_{\ell} \ p_{\text{T}}(\ell) + p_{\text{T}}(\tau_{\text{had-vis}}) > 90 \ \text{GeV} \\ \text{m}_{ee} \notin [80, 100] \ \text{GeV} \end{array}$	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	exactly 1 $\tau_{\text{had-vis}}$ and 1 τ_{lep} OS $\sum_{\tau_{\text{had-vis}}, \tau_{\text{lep}}} p_{\text{T}}(\tau) > 60 \text{ GeV}$	exactly 2 $\tau_{\text{had-vis}}$ OS $\sum_{\tau_{\text{had-vis}}} p_{\text{T}}(\tau) > 75 \text{ GeV}$
HIGGS BOSON MASS WINDOW CUT (ONLY APPLIED IN THE NN-BASED ANALYSIS)	$m_{2T} \in [60, 130] \text{ GeV}$	$m_{2T} \in [80, 130] \text{ GeV}$	$m_{\rm MMC} \in [100, 170] { m GeV}$	$m_{\rm MMC} \in [100, 180] \text{ GeV}$

Category	Region	Cuts	Major process contributing to the background from misidentified jets
	W+jets	PRESELECTION same-sign $\tau_{had-vis}$ $m_{T}(\ell, E_{T}^{miss}) < 60 \text{ GeV}$	W+jets ~ 70%
$WH, H \rightarrow \tau_{had} \tau_{had}$	Z o au au	PRESELECTION $m_{2T} < 60 \text{ GeV}$ $m_{T}(\ell, E_{T}^{\text{miss}}) < 40 \text{ GeV}$	$Z ightarrow au au \sim 50\%$
	top-quark	PRESELECTION # b jets > 0	$t\bar{t} \sim 70\%$
WH, $H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$Z \rightarrow \tau \tau$	PRESELECTIONopposite-sign light leptons $m_{coll}(\ell, \ell) \in [60, 120]$ GeV $m_{ee} \notin [80, 100]$ GeV	$Z \rightarrow au au \sim 40\%$
-	All Same Sign	PRESELECTION all objects with same-sign $m_{ee} \notin [80, 100]$ GeV	W+jets ~ 70%

Table 4: Input variables for the neural networks included in all channels, and then for the specific category. The indexes "1" and "2" refer to the leading and sub-leading objects, respectively (following a p_T ordering). The symbol ℓ_{τ} refers to the light lepton originating from a τ -lepton decay, while ℓ (without any index) refers to a light lepton associated with the V boson decay.

All categories	$ZH, H \rightarrow \tau_{\rm had} \tau_{\rm had}$	$ZH, H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$WH, H \rightarrow \tau_{had} \tau_{had}$
N-prongs(τ_1)	N-prongs(τ_2)	$p_{\mathrm{T}}(\ell_2)$	N-prongs(τ_2)
$p_{ m T}(au_1)$	$p_{ m T}(au_2)$	$\eta(\ell_2)$	$p_{ m T}(au_2)$
$\eta(au_1)$	$\eta(au_2)$	$\phi(\ell_2)$	$\eta(au_2)$
$\phi(au_1)$	$\phi(au_2)$	$p_{\mathrm{T}}(H)$	$\phi(au_2)$
$\Delta R(au_1,\ell_1)$	$p_{\mathrm{T}}(\ell_2)$	$\eta(\ell_{ au})$	$\sqrt{\eta(\ell_1)^2+\phi(\ell_1)^2}$
$p_{\mathrm{T}}(l_1)$	$\eta(\ell_2)$	$\phi(\ell_{ au})$	
$\eta(\ell_1)$	$\phi(\ell_2)$	$\Delta R(\ell,\ell)$	
$\phi(\ell_1)$	$m_{\ell\ell}$	$m_{\ell\ell}$	
$p_{\mathrm{T}}(E_{\mathrm{T}}^{\mathrm{miss}})$	$\Delta R(\ell,\ell)$		
$\phi(E_{ m T}^{ m miss})$			
	$WH, W \rightarrow e\nu_e, H \rightarrow \tau_e \tau_{had}$	WH, $W \to e(\mu)\nu_{e(\mu)}, H \to \tau_{\mu(e)}\tau_{had}$	WH, $W \to \mu \nu_{\mu}, H \to \tau_{\mu} \tau_{had}$
	$p_{\mathrm{T}}(\ell_{ au})$	$p_{\mathrm{T}}(\ell_{ au})$	$p_{\mathrm{T}}(\ell_{ au})$
	$\eta(\ell_{ au})$	$\eta(\ell_{ au})$	$\eta(\ell_{ au})$
	$\phi(\ell_{ au})$	$\phi(\ell_{ au})$	$\phi(\ell_{ au})$
	$\Delta\eta(\ell,\ell_{ au})$	$\Delta\eta(\ell,\ell_{ au})$	$\Delta\eta(\ell,\ell_{ au})$
	jet width(τ_1)	jet width(τ_1)	jet width(τ_1)
	$p_{\mathrm{T}}(H)$	$m(au_1,\ell_ au)$	$\Delta R(\ell,\ell_{ au})$
	$m(au_1,\ell_ au)$	$\Delta R(\ell,\ell_{ au})$	$m(au_1, l_{ au})$
	$\Delta\eta(au_1,\ell_ au)$	$\Delta\eta(au_1,\ell_ au)$	$\Delta\eta(au_1,\ell_ au)$
	$\Delta \phi(l_1,\ell_ au)$	$\sum p_{\rm T}(\text{all visible})$	$\Delta R(au_1,\ell_ au)$
	$\Delta_{oldsymbol{\phi}}(au_{1},~E_{ ext{T}}^{ ext{miss}})$	$\Delta \phi(au_1, E_{\mathrm{T}}^{\mathrm{miss}})$	$\sum p_{\rm T}$ (all visible)
	$\Delta R(\ell,\ell_{ au})$		$\Delta \phi(\ell_1,\ell_ au)$

Decay CP

universität freiburg

Sakharov Conditions

- 1- Baryon Number violation
- 2- CP violation
- 3- Thermal inequilibrium

CP-mixed signal sample

- Generate events without polarization POWHEG+PYTHIA8
- Use TAUSPINNER to reweight the generated events to CP-mix scenarios

Decay CP - Decay Mode Reconstruction

 $H \rightarrow \tau \tau$ measurements and searches with the ATLAS detector | Ö. O. Öncel (Freiburg & ATLAS) | TAU2023 International Workshop | 06 December 2023 | ogul.oncel@cern.ch

Eur. Phys. J. C 83, 563 (2023)

Decay CP - Decay Plane Reconstruction

Eur. Phys. J. C 83, 563 (2023)

 π^{-} n* π^+ (c) Combined IP and ρ method $\varphi^* = \arccos(\mathbf{\hat{q}}^{*0+}_{\perp} \cdot \mathbf{\hat{n}}^{*-}_{\perp}),$ $O_{\rm CP}^* = \mathbf{\hat{q}}^{*-} \cdot (\mathbf{\hat{q}}_{\perp}^{*+} \times \mathbf{\hat{n}}_{\perp}^{*-})$

 $\varphi_{\rm CP}$

Notation	Decay mode	Branching fraction
l	$\ell^{\pm} ar{ u} u$	35.2%
1p0n	$h^{\pm} v \; (\pi^{\pm} v)$	11.5% (10.8%)
1p1n	$h^{\pm}\pi^{0} u \left(\pi^{\pm}\pi^{0} u ight)$	25.9% (25.5%)
1pXn	$h^{\pm} \ge 2\pi^0 \nu \; (\pi^{\pm} 2\pi^0 \nu)$	10.8% (9.3%)
3p0n	$3h^{\pm}v (3\pi^{\pm}v)$	9.8% (9.0%)

•⊥), > 0	Decay channel	Decay mode combination	Method	Fraction in all τ -lepton-pair decays
$P \ge 0$ r < 0.		ℓ–1p0n	IP	8.1%
p	$ au_{ m lep} au_{ m had}$	ℓ–1p1n	IP– ρ	18.3%
		ℓ–1pXn	IP– ρ	7.6%
$_{+} \geq 0$		ℓ –3p0n	IP– a_1	6.9%
₊ < 0.		1p0n-1p0n	IP	1.3%
		1p0n-1p1n	IP– ρ	6.0%
		1p1n-1p1n	ho	6.7%
	⁴ had ⁴ had	1p0n–1pXn	$IP-\rho$	2.5%
		1p1n–1pXn	ho	5.6%
		1p1n-3p0n	ρ - a_1	5.1%

- IP method (for $l = e, \mu$ and 1p0n)
 - Charged pion (π^{\pm}) and impact parameter $(\mathbf{n}^{\star^{\pm}})$ Ο
- ρ decay plane method (1p1n, 1pXn)
 - Charged pion and neutral pion (π^0) Ο
- Combined
 - Combination of methods w.r.t. decay modes Ο
- a, decay method (3p0n)
 - Modified p method or 3-prong decays Ο

Decay CP - Preselection

Eur. Phys. J. C 83, 563 (2023)

Preselection: $\tau_{lep} \tau_{had}$ channel	Preselection: $\tau_{had} \tau_{had}$ channel
Leading jet with $p_{\rm T} > 40 {\rm GeV}$	Leading jet with $p_{\rm T} > 70$ GeV, $ \eta < 3.2$
One lepton (e or μ) as τ_{lep} candidate	Two τ_{had} candidates, classified as 1p0n, 1p1n, 1pXn and 3p0n
One τ_{had} candidate, classified as 1p0n, 1p1n, 1pXn and 3p0n	Opposite electric charge between two τ_{had} candidates
Opposite electric charge between τ_{lep} and τ_{had} candidates	No electron or muon
$p_{\rm T} (\tau_{\rm lep}) > 21$ to 27.3 GeV, $p_{\rm T} (\tau_{\rm had}) > 30$ GeV	$p_{\rm T}(\tau_1) > 40 {\rm GeV}, p_{\rm T}(\tau_2) > 30 {\rm GeV}$
$\Delta R_{\tau\tau} < 2.5, \Delta \eta_{\tau\tau} < 1.5$	$0.6 < \Delta R_{\tau\tau} < 2.5, \Delta \eta_{\tau\tau} < 1.5$
Collinear approx.: $0.1 < x_1 < 1.4, 0.1 < x_2 < 1.2$	Collinear approx.: $0.1 < x_1 < 1.4, 0.1 < x_2 < 1.4$
$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$
$m_{\rm T} < 70 {\rm GeV}$	1

ATLAS

Decay CP - Optimized SR Selection

Eur. Phys. J. C 83, 563 (2023)

Channel	Signal region	Decay mode combination	Selection criteria	Channel	Signal region	Decay mode combination	Selection criteria
High $ au_{ m lep} au_{ m had}$		ℓ–1p0n	$ d_0^{\text{sig}}(e) > 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0$			1p0n-1p0n	$ d_0^{sig}(\tau_1) > 1.5$ $ d_0^{sig}(\tau_2) > 1.5$
	High	<i>ℓ</i> −1p1n	$ d_0^{\text{sig}}(e) > 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0$		High	1p0n-1p1n	$\begin{aligned} d_0^{\rm sig}(\tau_{1\rm p0n}) &> 1.5\\ y^{\rho}(\tau_{1\rm p1n}) &> 0.1 \end{aligned}$
		t ipin	$ y^{\rho}(\tau_{1\text{p1n}}) > 0.1$		lpln-lpln	$ y^{\rho}(\tau_1)y^{\rho}(\tau_2) > 0.2$	
	Madiana	ℓ–1pXn	$ d_0^{\text{sig}}(e) > 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0$ $ y^{\rho}(\tau_{1\text{pXn}}) > 0.1$	$ au_{ m had} au_{ m had}$	had	1p0n–1pXn	$ d_0^{\text{sig}}(\tau_{1\text{p0n}}) > 1.5$
	Wedium	ℓ–3p0n	$ d_0^{\text{sig}}(e) > 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0$ $ y^{a_1}(\tau_{3\text{p0n}}) > 0.6$		Medium	1p1n–1pXn	$ y^{\rho}(\tau_{1p1n}) > 0.1$ $ y^{\rho}(\tau_{1p1n})y^{\rho}(\tau_{1pXn}) > 0.2$
	Low	All above	Not satisfying selection criteria			1p1n-3p0n	$ y^{\rho}(\tau_{1p1n}) > 0.1$ $ y^{a_1}(\tau_{2,n}) > 0.6$
					Low	All above	Not satisfying selection criteria

Decay CP - SR Distributions

Eur. Phys. J. C 83, 563 (2023)

Decay CP - CR Distributions

Decay CP - Fit Results

Eur. Phys. J. C 83, 563 (2023)

Fitted parameters	Observed	Expected
$\phi_{ au}$	$9^{\circ} \pm 16^{\circ}$	$0^{\circ} \pm 28^{\circ}$
$\mu_{ au au}$	$1.02^{+0.20}_{-0.20}$	$1.00^{+0.21}_{-0.21}$
$NF_{Z \to \tau \tau}^{Boost_1}$	1.01 ± 0.05	1.00 ± 0.04
$NF_{Z \to \tau \tau}^{Boost_0}$	1.02 ± 0.05	1.00 ± 0.05
$\mathrm{NF}_{Z ightarrow au au}^{\mathrm{VBF}_1}$	1.04 ± 0.08	1.00 ± 0.08
$\mathrm{NF}_{Z ightarrow au au}^{\mathrm{VBF}_0}$	0.95 ± 0.07	1.00 ± 0.08

Set of nuisance parameters	Impact on ϕ_{τ} [degrees]
Jet energy scale	3.4
Jet energy resolution	2.5
Pile-up jet tagging	0.5
Jet flavour tagging	0.2
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.4
Electron	0.3
Muon	0.9
$ au_{\rm had}$ reconstruction	1.0
Misidentified $ au$	0.6
$ au_{had}$ decay mode classification	0.3
π^0 angular resolution and energy scale	0.2
Track (π^{\pm} , impact parameter)	0.7
Luminosity	0.1
Theory uncertainty in $H \rightarrow \tau \tau$ processes	1.5
Theory uncertainty in $Z \rightarrow \tau \tau$ processes	1.1
Simulated background sample statistics	1.4
Signal normalisation	1.4
Background normalisation	0.6
Total systematic uncertainty	5.2
Data sample statistics	15.6
Total	16.4

Decay CP - ATLAS vs. CMS

 $H \rightarrow \tau \tau$ measurements and searches with the ATLAS detector | Ö. O. Öncel (Freiburg & ATLAS) | TAU2023 International Workshop | 06 December 2023 | ogul.oncel@cern.ch

LFV

universität freiburg

$H \rightarrow \tau \tau$ measurements and searches with the ATLAS detector | Ö. O. Öncel (Freiburg & ATLAS) | TAU2023 International Workshop | 06 December 2023 | ogul.oncel@cern.ch

LFV - Samples and categories

Process	Generator		PDF s	et	Tune	Order
	ME	PS	ME	PS		
Higgs boson						
ggF	Powheg Box v2	Рутніа 8	PDF4LHC15nnlo	CTEQ6L1	AZNLO	N ³ LO QCD + NLO EW
VBF	Powheg Box v2	Рутніа 8	PDF4LHC15nlo	CTEQ6L1	AZNLO	NNLO QCD + NLO EW
VH	Powheg Box v2	Рутніа 8	PDF4LHC15nlo	CTEQ6L1	AZNLO	NNLO QCD + NLO EW
tŦH	$\operatorname{Powheg}\nolimits Box v2$	Рутніа 8	NNPDF3.0nnlo	NNPDF2.3LO	A14	NLO QCD + NLO EW
Background						
V + jets (QCD/EW)	Sherpa 2.	2.1	NNPDF3.0nnlo		Sherpa	NNLO QCD + LO EW
$V + jets (QCD/EW)^*$	Powheg Box v2	Рутніа 8	CT10nlo	CTEQ6L1	AZNLO	NNLO
Diboson	Sherpa 2.	Sherpa 2.2.1		NNPDF3.0nnlo		NLO
$t\bar{t}$	Powheg Box v2	Рутніа 8	NNPDF3.0nnlo	NNPDF2.3LO	A14	NNLO + NNLL
Single top	$\operatorname{Powheg}\nolimits Box v2$	Рутніа 8	NNPDF3.0nnlo	NNPDF2.3L0	A14	NLO

Method	Channel	Category	Region	1 POI fit	2 POI fit		
			SR	\checkmark	\checkmark		
		non-VBF	$Z \rightarrow \tau \tau \ \mathrm{CR}$	\checkmark	\checkmark		
MC-template	$\ell \tau_{e}$		Top-quark CR	\checkmark	\checkmark		
the template			SR		\checkmark		
		VBF	$Z \rightarrow \tau \tau \ \mathrm{CR}$		\checkmark		
			Top-quark CR		\checkmark		
MC tomplata	P-	non-VBF	SR	\checkmark	\checkmark		
MC-template	Uthad	VBF	SR	\checkmark	\checkmark		
Summatry	P-	non-VBF	SR		2 POI fit $$ $$ $$ $$ $$ $$ $$ $$ $$		
Symmetry	$\mathcal{U}_{\ell'}$	VBF	SR	\checkmark			

Selection	$\ell au_{\ell'}$	$\ell au_{\ell'}$ ℓau_{had} Select		$\ell au_{\ell'}$	$\ell au_{ m had}$		
	exactly 1 <i>e</i> and 1 μ , OS τ_{had} -veto	exactly 1ℓ and $1\tau_{had-vis}$, OS τ_{had} Tight ID	misidentified background CR	<i>non-VBF</i> (or <i>VBF</i>) category with statistically independent lepton (ℓ or $\tau_{had-vis}$) selection, see text			
Baseline	b-veto $p_{\rm T}^{\ell_1} > 45 (35) \text{ GeV MC-template (Symmetry method)}$ $p_{\rm T}^{\ell_2} > 15 \text{ GeV}$ $30 \text{ GeV} < m_{\ell_1 \ell_2} < 150 \text{ GeV}$	$p_{\rm T}^{\tau_{\rm had-vis}} > 25 \text{GeV}, \eta^{\tau_{\rm had-vis}} < 2.4$ $\sum_{\rm Cos} \Delta \phi(i, E_{\rm T}^{\rm miss}) > -0.35$	$Z \rightarrow \mu \mu \operatorname{CR/VR} \left(\ell \tau_{\ell'} / \ell \tau_{had} \right)$	$\begin{array}{l} \textit{Baseline with 35 GeV} < p_{\rm T}^{\ell_1} < 45 {\rm GeV} \\ 75 {\rm GeV} < m_{\ell_1 \ell_2} < 100 {\rm GeV} \\ \Delta \phi(\ell_2, E_{\rm T}^{\rm miss}) < 1.5 \\ 1.25 < p_{\rm T}^{\rm track}(\ell_2) / p_{\rm T}^{\rm cluster}(\ell_2) < 3 \end{array}$	$Baseline \\ \eta(\tau) < 0.1 \\ 90 \text{ GeV} < m_{\text{coll}}(\mu, \tau) < 110 \text{ GeV}$		
	$0.2 < p_{\rm T}^{\rm track}(\ell_2 = e) / p_{\rm T}^{\rm cluster}(\ell_2 = e) < 1.25 \text{ (MC-template)} \qquad \begin{aligned} &i=\ell, \tau_{\rm had-vis} \\ & \Delta\eta(\ell, \tau_{\rm had-vis}) < 2 \\ & \Delta\eta(\ell, \tau_{\rm had-vis}) < 2 \end{aligned}$		top-quark CR	<i>non-VBF</i> (or <i>VBF</i>) selection with inverted <i>b</i> -veto requirement	-		
	$ z_0 \sin \theta < 0.5 \mathrm{mm}$ Baseline		$Z \rightarrow \tau \tau \ \mathrm{CR}$	<i>non-VBF</i> (or <i>VBF</i>) selection with 35 GeV $< p_{T}^{\ell_{1}} < 45$ GeV	_		
$VBF \ge 2 \text{ jets, } p_{\rm T}^{\rm j_1} > 40 \text{ GeV, } p_{\rm T}^{\rm j_2} > 30 \text{ GeV} \\ \Delta \eta_{\rm jj} > 3, m_{\rm jj} > 400 \text{ GeV}$		0 GeV		Baseline $p_{\rm T}^{\ell_2} > 30 {\rm GeV}$			
non-VBF Baseline plus fail VBF categorisation - 90 -		sation veto events if $90 < m_{vis}(e, \tau_{had-vis}) < 100 \text{ GeV}$	Diboson VR $100 \text{ GeV} < m_{\ell_1 \ell_2} < 150 \text{ GeV}$ $m_T > 30 \text{ GeV}$ veto events with jets with $p_T > 30 \text{ GeV}$		_		

Variable	$\ell au_{ m had}$	1	$\ell au_{\ell'}$ MC-te	emplate	$\ell au_{\ell'}$ Sym	metry	$\Delta n(\ell_{\rm ex},\tau)$				1		./
Variable	non-VBF	VBF	non-VBF	VBF	non-VBF	VBF	$\Delta \eta(\ell_H, \tau)$ $\Delta \phi(\ell_H, \tau)$	v ./	×			× ./	v
m _{coll}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\Delta \phi(\ell, F^{\text{miss}})$	v		./	./	× ./	./
$m_{ m vis}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$ \Delta\phi(\ell_T, E_T) = \Delta\phi(\tau_{\text{holoris}}, E^{\text{miss}}) $	1		v	v	v	v
$m_{ m MMC}$			\checkmark	\checkmark	\checkmark	\checkmark	$\Delta \varphi(c_H, \mathcal{L}_T) = \Delta \varphi(c_{\text{had-vis}}, \mathcal{L}_T)$	v					1
$m_{ m T}(au,E_{ m T}^{ m miss})$	\checkmark	\checkmark			\checkmark	\checkmark	$\Delta \Phi \left(\ell_{H}, E^{\text{miss}} \right)$			`	`	× √	• ✓
$m_{\mathrm{T}}(\ell_{H}, E_{\mathrm{T}}^{\mathrm{miss}})$	\checkmark	\checkmark			\checkmark	\checkmark	$\Delta d_0 \left(\ell_1, \ell_2 \right)$		•	· ✓	\checkmark	· ✓	•
$m_{\mathrm{T}}(\ell_{1},E_{\mathrm{T}}^{\mathrm{miss}})$			\checkmark	\checkmark			$\frac{1}{\sigma^{\ell_{\tau}}}$					•	
$m_{\rm T}(\ell_2, E_{\rm T}^{\rm miss})$			\checkmark	\checkmark			$\frac{\partial}{\partial a_0}$./		v	v		
$E_{ m T}^{ m miss}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	m::	v			./		1
$p_{\mathrm{T}}(\ell_{H})$	\checkmark	\checkmark					$N_{\rm intr}$ ($z_{\rm e} > 20 {\rm GeV}$)				v		v
$p_{ m T}(au_{ m had-vis})$	\checkmark	\checkmark					$ \Delta n_{::} $						1
$p_{\mathrm{T}}(\ell_2 + E_{\mathrm{T}}^{\mathrm{miss}})/p_{\mathrm{T}}(\ell_1)$			\checkmark	\checkmark			$\Delta R(i, i)$		•		\checkmark		• ✓
$p_{\mathrm{T}}^{\mathrm{rest}}(\ell_{H})$			\checkmark	\checkmark	\checkmark	\checkmark	$ \Delta n_{ii} \cdot n_{ii} \cdot n_{ii}$				\checkmark		•
$p_{\rm T}^{\rm rest}(\ell_{\tau})$			\checkmark	\checkmark	\checkmark	\checkmark	$p_{T}(i_1)$						\checkmark
$p_{\mathrm{T}}^{\mathrm{iot}}$				\checkmark	\checkmark	\checkmark	$p_{T}(i_2)$						\checkmark
$p_{\rm T}(\ell_H)/E_{\rm T}^{\rm mass}$					\checkmark	\checkmark	$\Delta \phi(i_1, E_{\rm T}^{\rm miss})$				\checkmark		\checkmark
$p_{\mathrm{T}}(\ell_H)/p_{\mathrm{T}}(\ell_{\tau})$					\checkmark	\checkmark	$\Delta \phi(\mathbf{i}_2, E_{\mathrm{T}}^{\mathrm{miss}})$				\checkmark		\checkmark
$p_{\rm T}(\ell_{\tau} + E_{\rm T}^{\rm mas})/p_{\rm T}(\ell_H)$					\checkmark	\checkmark	η -centrality (ℓ_H)				\checkmark		\checkmark
$\sum p_{\mathrm{T}}$,	,	,	,		\checkmark	η -centrality (ℓ_{τ})				\checkmark		\checkmark
$\Delta R(\ell_H, \tau)$		\checkmark		\checkmark		\checkmark	·		I				

LFV - Systematics

2 POI	Impact on ob	served [10 ⁻⁴]
Source of uncertainty	$\hat{\mathcal{B}}(H \to e\tau)$	$\hat{\mathcal{B}}(H \to \mu \tau)$
Flavour tagging	0.7	0.2
Misidentified background $(e\tau_{had})$	2.1	0.3
Misidentified background $(e\tau_{\mu})$	2.7	0.3
Misidentified background ($\mu \tau_{had}$)	0.6	1.4
Misidentified background $(\mu \tau_e)$	0.9	1.0
Jet and $E_{\rm T}^{\rm miss}$	1.2	0.9
Electrons and muons	1.4	0.5
Luminosity	0.6	0.4
Hadronic τ decays	0.9	0.9
Theory (signal)	0.8	0.8
Theory $(Z + jets processes)$	0.8	1.0
$Z \rightarrow \ell \ell$ normalisation $(e\tau)$	< 0.1	< 0.1
$Z \rightarrow \ell \ell$ normalisation ($\mu \tau$)	0.2	0.9
Background sample size	3.7	2.3
Total systematic uncertainty	5.1	3.6
Data sample size	3.0	2.7
Total	5.9	4.5

LFV - Fit Setup

 $H \rightarrow \tau \tau$ measurements and searches with the ATLAS detector | Ö. O. Öncel (Freiburg & ATLAS) | TAU2023 International Workshop | 06 December 2023 | ogul.oncel@cern.ch

Symmetry based leplep

NNs trained with Keras

Separate training for Non VBF and VBF. Shared between $e \tau_{\mu}$ and $\mu \tau_{e}$

Non VBF

1 Multiclassifier NN with 3 output nodes. Signal output node used for fit.

VBF

3 BDTs. Scores combined linearly.
LFV vs. Zττ+Hττ+MCfakes

- LFV vs. Zpp+VV+HWW
- LFV vs. Fakes

MC-template leplep

BDTs with TMVA

Separate training for Non VBF and VBF. Shared between $e\tau_{\mu}$ and $\mu\tau_{e}$

Non VBF and VBF

3 BDTs. Scores combined linearly.

- LFV vs. $Z\tau\tau+H\tau\tau+Z\ell\ell$
- LFV vs. Top+VV+HWW
- LFV vs. Fakes

MC-template lephad

BDTs with TMVA

Separate trainings for Non VBF and VBF and for $e \tau_{\mu}, \mu \tau_{e}$

Non VBF e au

- 3 BDTs. Scores combined linearly.
- LFV vs. Ζττ
- LFV vs. Fakes
- LFV vs. Other backgrounds

Non VBF $\mu\tau$ and VBF

2 BDTs. Scores combined linearly (NonVBF $\mu\tau$) or quadratically (VBF).

- LFV vs. *Ζττ*
- LFV vs. Other backgrounds

Outlook

universität freiburg

- Higher CoM energy 14/13 -> 1.1
- Higher Integrated Lumi L(HL-LHC)/L(Run2)= 3000/140 = 21
 - SF Stat. unc. on MC = 0 OR alternatively SF=1/Sqrt(SF_L) = 0.21
- Detector updates
- More precise theory calculations [Eur. Phys. J. C 78 (2018) 962]
- Scale systematic SFs according to det. Upgrade and th precision
- Better object Reco (ETMISS & flavour tagging)
- Harsher detector conditions (<mu> = 25 (R2), 60 (R3), 140-200 (HL-LHC))
- 1% Lumi uncertainty
- Thad stat. Unc. negligible

Uncertainties	SF_{Syst}
E_{T}^{miss}	0.50
Flavour tagging c - and b -jets	0.50
Jet, others	1.00
Electron and muon	1.00
$ au_{had-vis}$ ID, statrelated	0.00
$ au_{had-vis}$, others	1.00
Data-driven estimates, statrelated	0.21
Data-driven estimates, others	1.00
Bkg. modelling, PDF	0.40
Sig. modelling, PDF	$[0.41, \ 0.46]$
Modelling, others	0.50
Luminosity	0.59

MC Template method fit setup projection (syst dominant in both scenarios)

Expected uncertainty on the angle reduces to $\pm 18^{\circ}$ compared to $\pm 28^{\circ}$ in run 2 analysis

DeepSets Decay Mode Classification for Run 3

- The h^{\pm} in τ_{had} decay, obtained from the $\tau_{had-vis}$ tracks (reconstructed τ_{had} tracks);
- The selected π^0 candidates that can come from the τ_{had} decay or h^{\pm} remnants, pile-up, etc (referred to as π^0 candidates or Neutral PFOs);
- The local energy maxima in the EM1 layer of EM calorimeter associated with a photon from the π^0 candidate decay (referred to as photon shots or shot PFOs);
- The reconstructed conversion tracks produced by $\gamma \rightarrow e^+e^-$.

Hereafter, an 'object' refers to a τ_{had} track, π^0 candidates, photon shots or conversion track. For all

DeepSets Decay Mode Classification for Run 3

Variable	Description
$p_{\rm T}(\tau_{\rm had})$	$p_{\rm T}$ of the $\tau_{\rm had}$ (using calorimeter based $\tau_{\rm had-vis}$ energy scale)
$p_{\rm T}({\rm object})$ $\Delta \phi({\rm object}, \tau_{\rm had})$	$p_{\rm T}$ of the object Distance between the object and $\tau_{\rm had}$ in ϕ
$\Delta \eta(\mathrm{object}, \tau_{\mathrm{had}})$	Distance between the object and τ_{had} in η
$\Delta \phi(ext{object, trackECal})$	Distance between the object and the extrapolation of highest- $p_{\rm T} \tau_{\rm had}$ track to EM calorimeter in ϕ
$\Delta\eta({ m object,trackECal})$	Distance between the object and the extrapolation of highest- $p_{\rm T}$ $\tau_{\rm had}$ track to EM calorimeter in n

Variable	Description
$\left\langle \eta^{1} ight angle$	First moment in η in cluster shower axis
$\log(\langle r^2 \rangle)$	Second moment in the radial distance of cluster cells from the shower axis
$\Delta \theta$ ()	Distance in θ between the EM shower axis and the vector pointing
$\log(\lambda_{\rm centre})$	from the primary vertex to the centre of the shower Distance of the cluster shower centre from the calorimeter front face measured along the shower axis
$\langle \lambda^2 \rangle$	Mean distance of a cell from the shower centre along the shower axis
$\log(\langle \rho^2 \rangle)$	Second moment in the cluster energy density, where $\rho = E^{\text{cluster}} / V^{\text{cluster}}$
$f_{\rm core}$	Sum of energy fractions in the most energetic cells per sampling
$f_{\rm core}^{\rm EM1}$	Same as $f_{\rm core}$ but only consider EM1
$N_{\rm pos,EM1}$	Number of cells with positive energy in EM1 Number of cells with positive energy in EM2
$E_{\rm EM1}$	Energy in the EM1 layer
$E_{\rm EM2}$	Energy in the EM2 layer
$\left\langle \eta_{\rm EM1}^1 \right\rangle$ w.r.t. cluster	First moment in η in EM1 with respect to the cluster
$\left< \eta_{\rm EM2}^1 \right>$ w.r.t. cluster	First moment in η in EM2 with respect to the cluster
$\log(\left\langle \eta_{\rm EM1}^2 \right\rangle)$ w.r.t. cluster	Second moment in η in EM1 with respect to the cluster
$\log(\left\langle \eta_{\rm EM2}^2 \right\rangle)$ w.r.t. cluster	Second moment in η in EM2 with respect to the cluster

y mode		$ATLAS$ Prelimina $\sqrt{s} = 13$	Simulation ary TeV	Diagona Mediu	al efficiency: 81.7% n τ_{had} identification			
l deca	3pXn	0.0	0.6	0.7	4.2	65.1		
NN tal	3p0n	0.4	0.2	0.1	92.2	25.6		
epsei	1pXn	0.5	6.3	59.3	0.1	2.2		
De	1p1n	9.4	86.3	38.8	1.4	6.5		
	1p0n	89.6	6.6	1.1	2.0	0.6		
	I	1p0n	1p1n	1pXn	3p0n	3pXn		

Truth tau decay mode