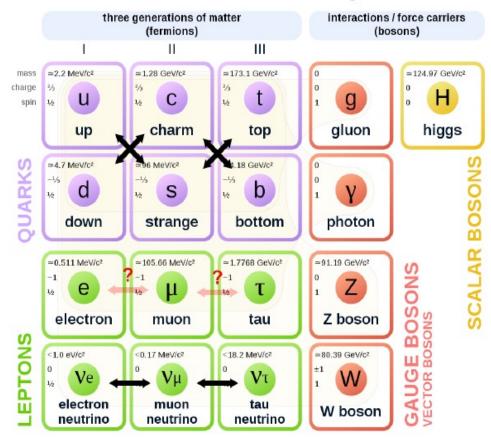
Motivations, Design and Current Status

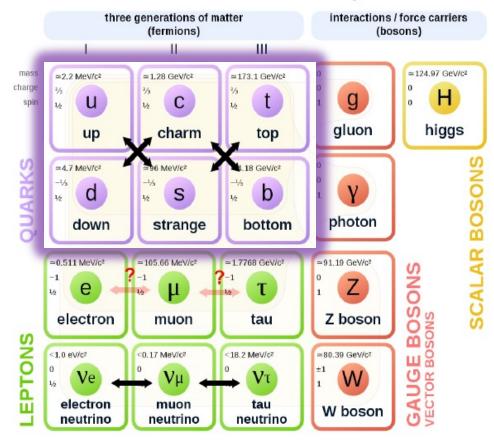
The Mu2e Experiment

Sophie Charlotte Middleton

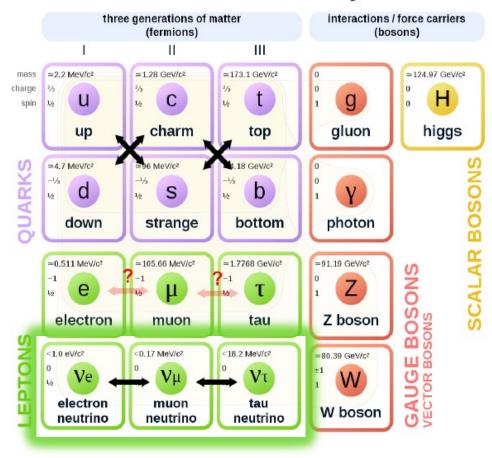

on behalf of the Mu2e experiment

Caltech

TAU 2023, Louisville Kentucky December 2023

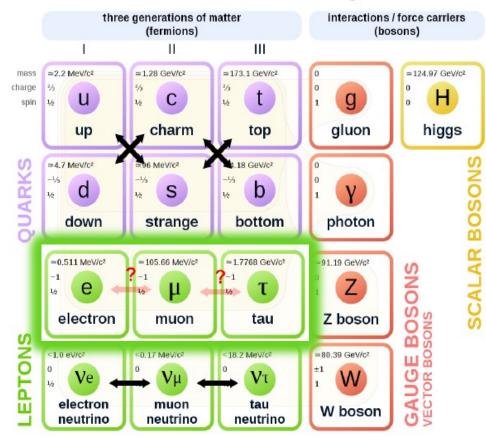


Motivations


Standard Model of Elementary Particles

- Flavor is not conserved in:
 - quarks (via quark mixing);
 - neutrinos (via neutrino oscillations)

Standard Model of Elementary Particles


- Flavor is not conserved in:
 - quarks (via quark mixing);
 - neutrinos (via neutrino oscillations)

Standard Model of Elementary Particles

- Flavor is not conserved in:
 - quarks (via quark mixing);
 - neutrinos (via neutrino oscillations)

Caltech

Standard Model of Elementary Particles

- Flavor is not conserved in:
 - quarks (via quark mixing);
 - neutrinos (via neutrino oscillations)
- What about Charged Lepton Flavor Violation?

Charged Lepton Flavor Violation (CLFV)

 The minimal extension of the Standard Model, including masses of neutrinos, allows for CLFV at loop level, mediated by W bosons.

No outgoing neutrinos!

• Rates heavily suppressed by GIM suppression and are far below any conceivable experiment could measure:

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left(\frac{1}{4}\right) sin^2 2\theta_{13} sin^2 \theta_{23} \left|\frac{\Delta m_{13}^2}{M_W^2}\right|^2$$

 $B(\mu
ightarrow e \gamma) \sim artheta(10^{-54})$ S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340

Charged Lepton Flavor Violation (CLFV)

 The minimal extension of the Standard Model, including masses of neutrinos, allows for CLFV at loop level, mediated by W bosons.

No outgoing neutrinos!

• Rates heavily suppressed by GIM suppression and are far below any conceivable experiment could measure:

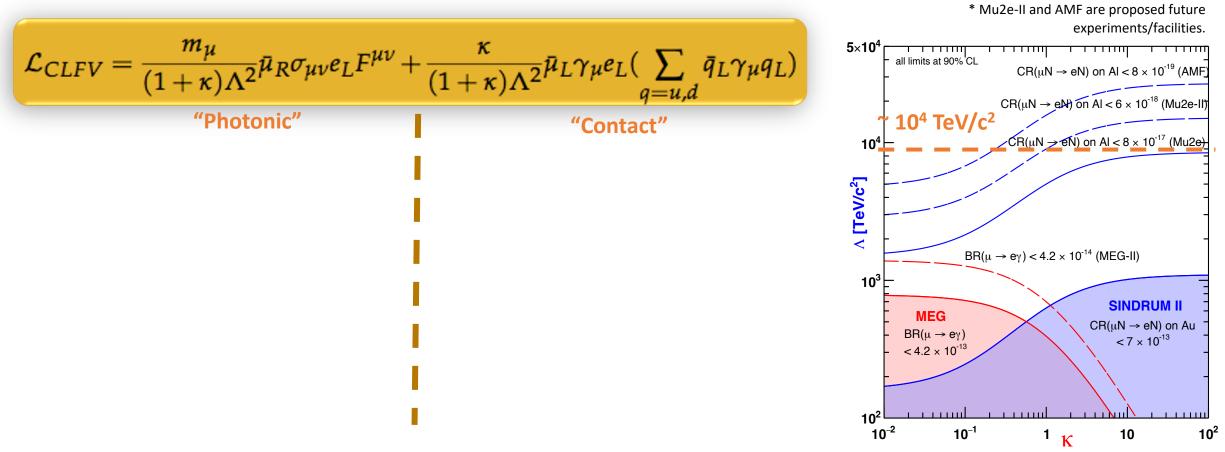
$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left(\frac{1}{4}\right) sin^2 2\theta_{13} sin^2 \theta_{23} \left|\frac{\Delta m_{13}^2}{M_W^2}\right|^2 \qquad \mathbf{B}(\mathbf{s},\mathbf{r})$$

 $B(\mu
ightarrow e \gamma) \sim artheta(10^{-54})$ S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340

 ...but many Beyond Standard Model (BSM) theories (e.g. SO(10) SUSY, scalar leptoquarks, seesaw models) predict enhanced rates of CLFV just below current limits O(10⁻¹³).

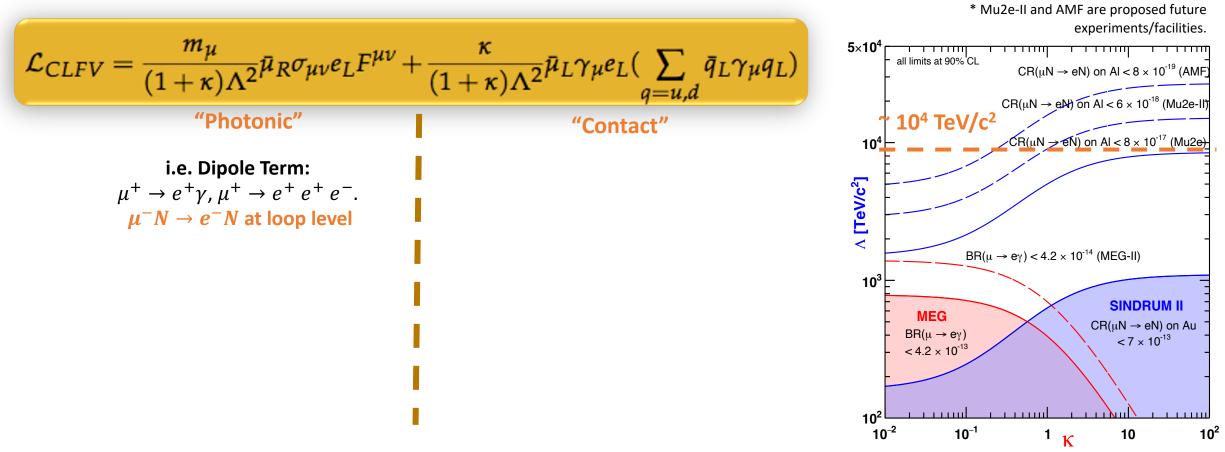
Mu2e is an indirect search for New Physics which offers a deep probe of many well-motivated BSM theories.

Current Experimental Searches for CLFV

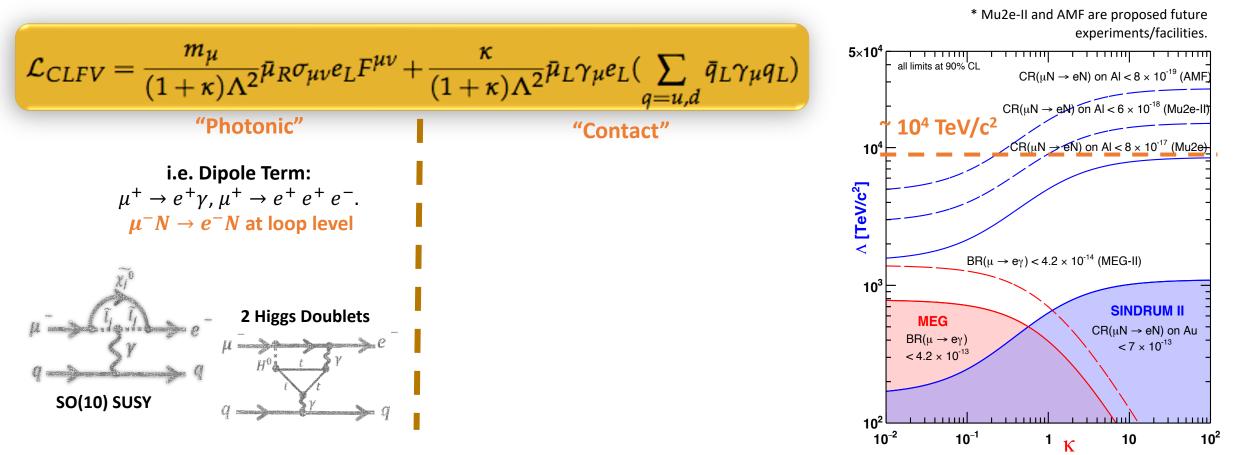

- Mu2e is an important part of a world-wide search for CLFV.
- Muons are a very powerful probe thanks to the availability of very intense beams and their relatively long lifetime.

Mode	Current Upper Limit (at 90% CL)	Projected Limit (at 90% CL)	Upcoming Experiment/s
$\mu^+ \to e^+ \gamma$	4.2 x 10 ⁻¹³	4 x 10 ⁻¹⁴	MEG II
$\mu^+ \to e^+ e^+ e^-$	~10 ⁻¹²	10 ⁻¹⁵ ~ 10 ⁻¹⁶	Mu3e
$\mu^{-}N \rightarrow e^{-}N$	7 x 10 ⁻¹³ (SINDRUM-II, 2006)	10 ⁻¹⁵ 10 ⁻¹⁶ 10 ⁻¹⁷	COMET Phase-I Mu2e Run-I Mu2e Run-II/ COMET Phase-II

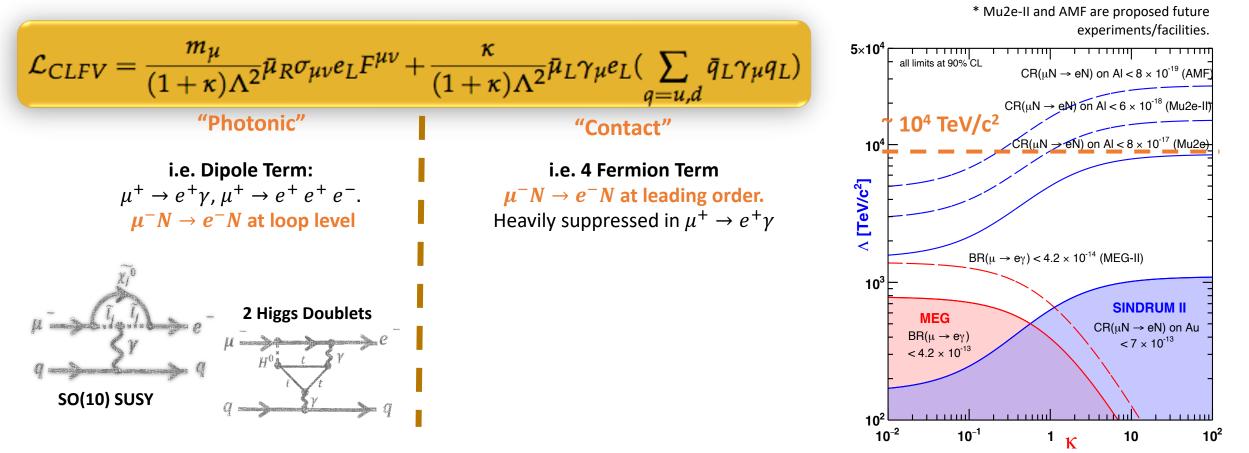
Current Experimental Searches for CLFV


- Mu2e is an important part of a world-wide search for CLFV.
- Muons are a very powerful probe thanks to the availability of very intense beams and their relatively long lifetime.

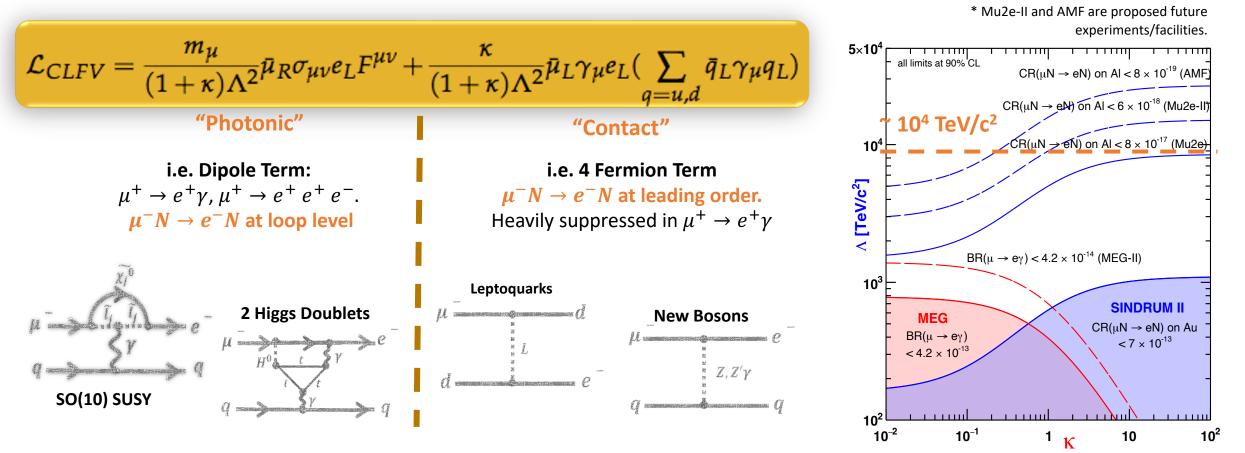
Mode	Current Upper Limit (at 90% CL)	Projected Limit (at 90% CL)	Upcoming Experiment/s
$\mu^+ \to e^+ \gamma$	4.2 x 10 ⁻¹³	4 x 10 ⁻¹⁴	MEG II
$\mu^+ ightarrow e^+ e^+ e^-$	~10 ⁻¹²	10 ⁻¹⁵ ~ 10 ⁻¹⁶	Mu3e
$\mu^- N \rightarrow e^- N$	7 x 10 ⁻¹³ (SINDRUM-II, 2006)	10 ⁻¹⁵ 10 ⁻¹⁶ 10 ⁻¹⁷	COMET Phase-I Mu2e Run-I Mu2e Run-II/ COMET Phase-II
		10	Wuze Rull-lly COWET Pliase-ll


𝔥 : Effective mass scale of New Physics (NP),

 κ : Determines relative sizes of contributions and to what extent NP is photonic ($\kappa \ll 1$) or 4-fermion ($\kappa \gg 1$)


𝔥 : Effective mass scale of New Physics (NP),

 κ : Determines relative sizes of contributions and to what extent NP is photonic ($\kappa \ll 1$) or 4-fermion ($\kappa \gg 1$)



 Λ : Effective mass scale of New Physics (NP),

 κ : Determines relative sizes of contributions and to what extent NP is photonic ($\kappa \ll 1$) or 4-fermion ($\kappa \gg 1$)

 κ : Determines relative sizes of contributions and to what extent NP is photonic ($\kappa \ll 1$) or 4-fermion ($\kappa \gg 1$)

 κ : Determines relative sizes of contributions and to what extent NP is photonic ($\kappa \ll 1$) or 4-fermion ($\kappa \gg 1$)

Complementarity amongst channels

- All three channels are sensitive to many new physics models \rightarrow discovery sensitivity across the board.
- Relative Rates however will be model dependent and can be used to elucidate the underlying physics.

Mode	$\mu^+ ightarrow e^+ \ e^+ \ e^-$	$\mu^- N o e^- N$	$\frac{BR(\mu^+ \rightarrow e^+ \ e^+ \ e^-)}{}$	$\frac{BR(\mu^-N\to e^-N)}{2}$
			$BR(\mu^+ o e^+ \gamma)$	$BR(\mu^+ \to e^+\gamma)$
MSSM	Loop	Loop	~ 6 x 10 ⁻³	10⁻³-10 ⁻²
Type I Seesaw	Loop	Loop	3 x 10 ⁻³ – 0.3	0.1-10
Type II Seesaw	Tree	Loop	(0.1 – 3) x 10 ³	10 ⁻²
Type III Seesaw	Tree	Tree	~10 ³	10 ³
LFV Higgs	Loop	Loop	10-2	0.1
Composite Higgs	Loop	Loop	0.05-0.5	2-20

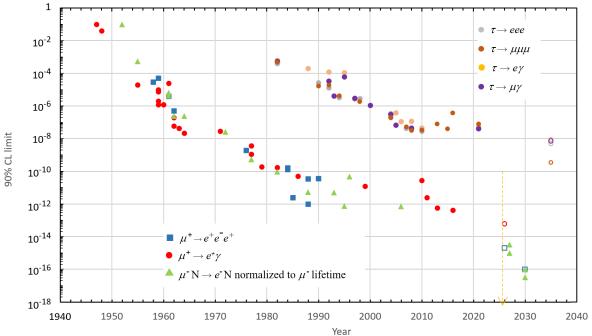
Complementarity amongst channels

- All three channels are sensitive to many new physics models \rightarrow discovery sensitivity across the board.
- Relative Rates however will be model dependent and can be used to elucidate the underlying physics.

Mode	$\mu^+ o e^+ \ e^+ \ e^-$	$\mu^- N o e^- N$	$\frac{BR(\mu^+ \rightarrow e^+ e^+ e^-)}{BR(\mu^+ \rightarrow e^+ \gamma)}$	$\frac{BR(\mu^- N \to e^- N)}{BR(\mu^+ \to e^+ \gamma)}$
MSSM	Loop	Loop	~ 6 x 10 ⁻³	10 ⁻³ -10 ⁻²
Type I Seesaw	Loop	Loop	3 x 10 ⁻³ – 0.3	0.1-10
Type II Seesaw	Tree	Loop	(0.1 – 3) x 10 ³	10-2
Type III Seesaw	Tree	Tree	~10 ³	10 ³
LFV Higgs	Loop	Loop	10-2	0.1
Composite Higgs	Loop	Loop	0.05-0.5	2-20

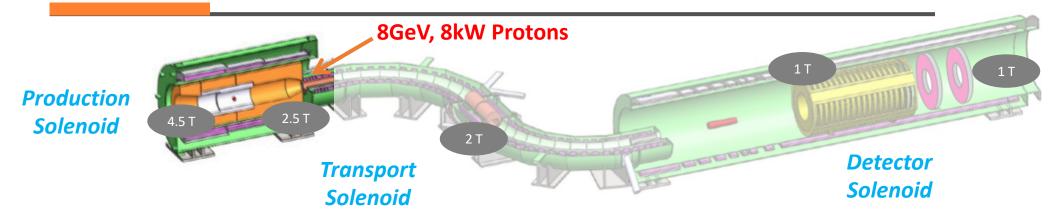
Complementarity amongst channels

- All three channels are sensitive to many new physics models \rightarrow discovery sensitivity across the board.
- Relative Rates however will be model dependent and can be used to elucidate the underlying physics.


Mode	$\mu^+ ightarrow e^+ \ e^+ \ e^-$	$\mu^- N o e^- N$	$\frac{BR(\mu^+ \rightarrow e^+ \ e^+ \ e^-)}{BR(\mu^+ \rightarrow e^+ \gamma)}$	$\frac{BR(\mu^- N \to e^- N)}{BR(\mu^+ \to e^+ \gamma)}$
MSSM	Loop	Loop	~ 6 x 10 ⁻³	10 ⁻³ -10 ⁻²
Type I Seesaw	Loop	Loop	3 x 10 ⁻³ – 0.3	0.1-10
Type II Seesaw	Tree	Loop	(0.1 – 3) x 10 ³	10-2
Type III Seesaw	Tree	Tree	~10 ³	10 ³
LFV Higgs	Loop	Loop	10-2	0.1
Composite Higgs	Loop	Loop	0.05-0.5	2-20

Nucl. Phy. B (Proc. Suppl.) 248–250 (2014) 13–19

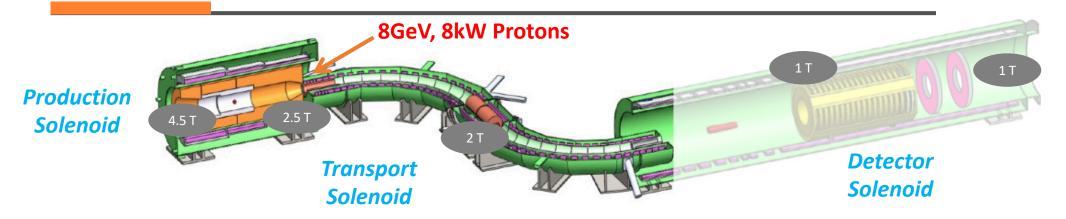
- In seesaw models CLFV rates aren't suppressed by smallness of neutrino mass.
- Different seesaw models given very different predicted rates of CLFV.
- Measuring CLFV can help us understand neutrino mass origin!


What about taus?

- Less stringent limits in 3rd generation, but here BSM effects may be higher.
- τ LFV searches at Belle II will be extremely clean, with very little background (if any), thanks to pair production and double-tag analysis technique.
- To determine type of mediator:
 - Compare muon channels to each other
- To determine the source of flavor violation:
 - Compare muons to other leptons i.e. taus

Design

$N\mu^- \rightarrow Ne^-$: The Mu2e Experiment

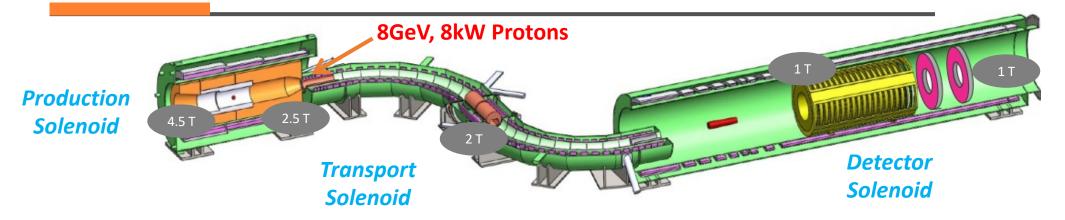


Production Solenoid:

- Pulsed 8 GeV Protons enter, hit Production Target. π produced, decay to μ .
- Graded magnetic field reflects muons to transport solenoid.

$N\mu^- \rightarrow Ne^-$: The Mu2e Experiment

Production Solenoid:


- Pulsed 8 GeV Protons enter, hit Production Target. π produced, decay to μ .
- Graded magnetic field reflects muons to transport solenoid.

Transport Solenoid:

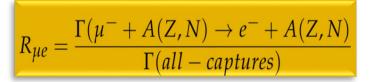
- "S" shape removes line of sight backgrounds.
- Collimators select low momentum, negative muons.

$N\mu^- \rightarrow Ne^-$: The Mu2e Experiment

Production Solenoid:

- Pulsed 8 GeV Protons enter, hit Production Target. π produced, decay to μ .
- Graded magnetic field reflects muons to transport solenoid.

Transport Solenoid:

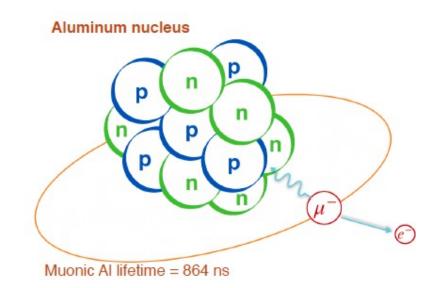

- "S" shape removes line of sight backgrounds.
- Collimators select low momentum, negative muons.

Detector Solenoid:

- Thin aluminum foil target captures the muons.
- Possible signal electrons are detected by a tracker and a calorimeter.
- Cosmic ray veto covers the whole detector solenoid and half the transport solenoid.

$$N\mu^- \rightarrow Ne^-$$
: Signal

• The $\mu \rightarrow e$ conversion rate is measured as a ratio to the muon capture rate on the same nucleus:


- Low momentum (-) muons are captured in the target atomic orbit and quickly (~fs) cascades to 1s state.
- In aluminum:

Caltech

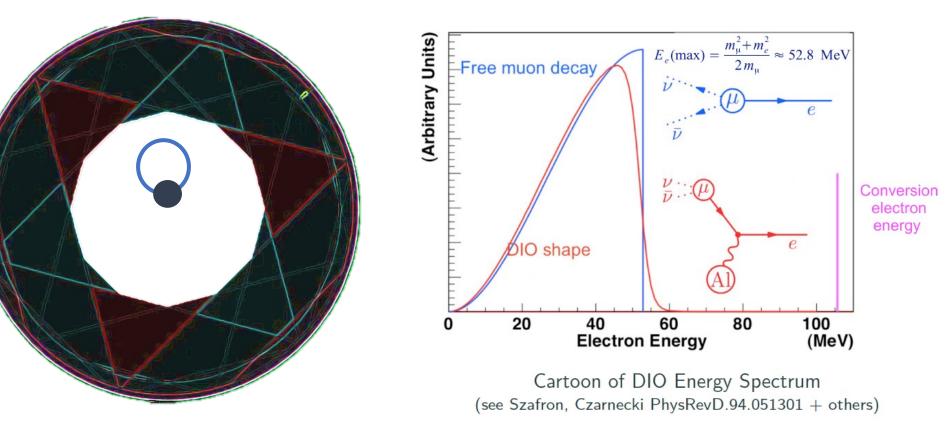
- 39 % Decay : $\mu + N \rightarrow e + \bar{v}_e + v_\mu$ (Background)
- **61 % Capture** : $\mu + N \rightarrow v_{\mu} + N'$ (Normalization)
- < 7 x 10⁻¹³ Conversion : $\mu + N \rightarrow e + N$ (Signal)
- Signal is monoenergetic electron consistent with:

 $E_e = m_{\mu} - E_{recoil} - E_{1SB.E}$, e.g For Al: E_e = 104.97 MeV.

- Coherent = nucleus stays intact.
- Will be smeared by scattering and energy losses

$N\mu^- \rightarrow Ne^-$: Removing Backgrounds

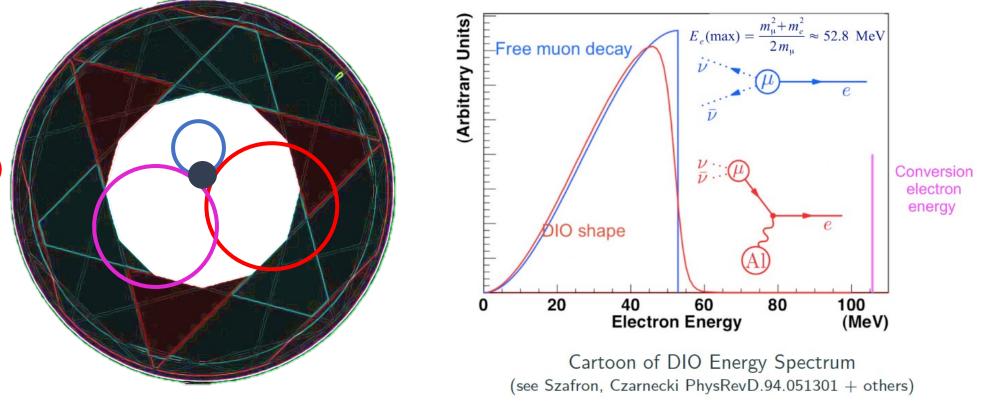
Beam delivery and detector systems optimized for high intensity, pure muon beam – must be "background free":


Туре	Source	Mitigation	Yield (for Run-I only)*
Intrinsic	Decay in Orbit (DIO)	Tracker Design/ Resolution	0.038 \pm 0.002 (stat) $^{+0.025}_{-0.015}$ (sys)
Beam Backgrounds	Pion Capture	Beam Structure/ Extinction	(in time) 0.010 \pm 0.002 $(stat)^{+0.001}_{-0.003}$ (sys) (out time) (1.2 \pm 0.001 $(stat)^{+0.1}_{-0.3}$ (sys)) x 10^-3
Cosmic Induced	Cosmic Rays	Active Veto System	0.046 \pm 0.010(stat) \pm 0.009 (sys)
		* assun	nes signal region of 103.6 < p < 104.9 MeV/c and 640 < t < 1650 ns

Run-I Sensitivity of Mu2e: Universe 2023, 9, 54.

Decay in Orbit (DIO) Backgrounds

Annular tracker: Removes > 97% of DIO (all Michel peak electrons).

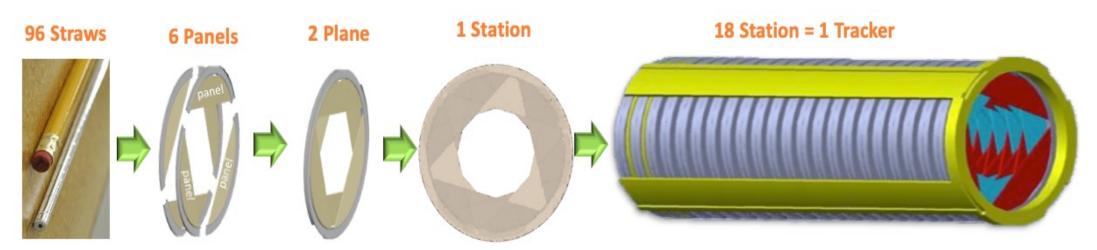

Michel Electron (< 52MeV/c)

Caltech

The Mu2e Experiment – Sophie Middleton – smidd@caltech.edu

Decay in Orbit (DIO) Backgrounds

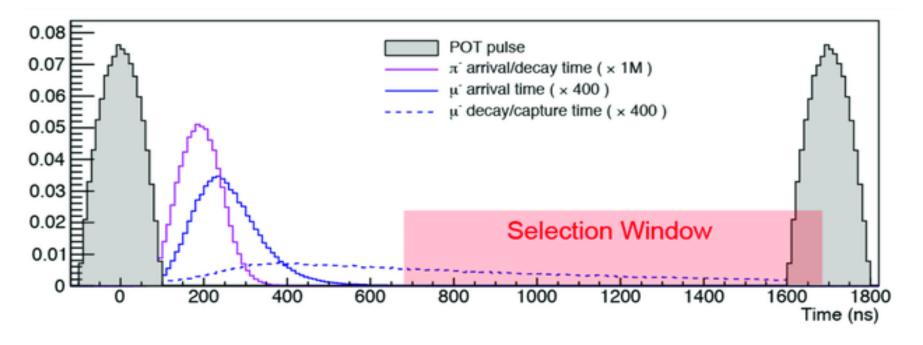
- Annular tracker: Removes > 97% of DIO (all Michel peak electrons).
- However, when decay happens in orbit, exchange of momentum produces recoil tail close to signal region (105 MeV/c).
- To remove remaining backgrounds necessitates < 200 keV/c momentum resolution.



- Michel Electron (< 52MeV/c)
- Problematic Tail (>100MeV/c)
- Signal (105MeV/c)

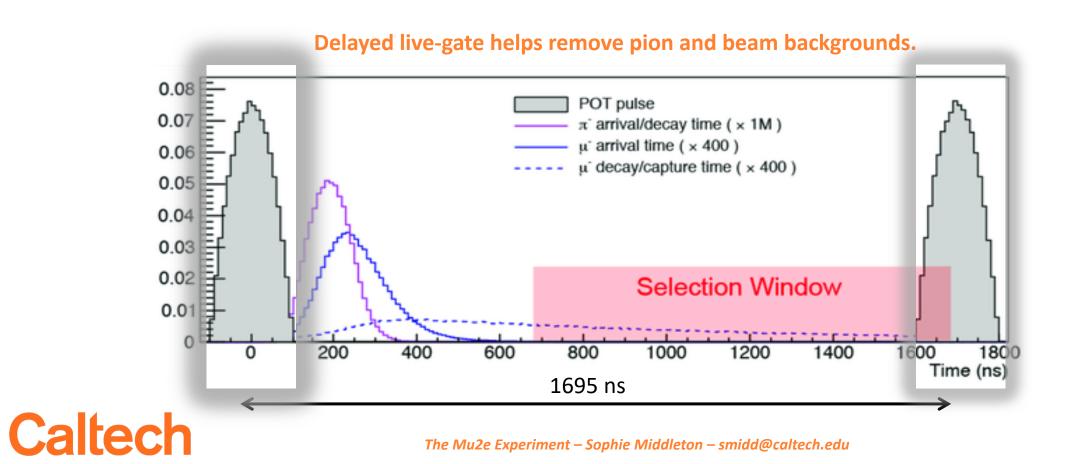
Decay in Orbit Backgrounds

- Need a high-resolution momentum measurement to distinguish tail DIO from signal:
 - Minimize energy loss by operating in vacuum and using low mass straws of 15 μ m diameter filled with 80:20 Ar:CO₂;
 - Include extra hit position information with high-angle stereo overlaps and readout on both ends of straw.



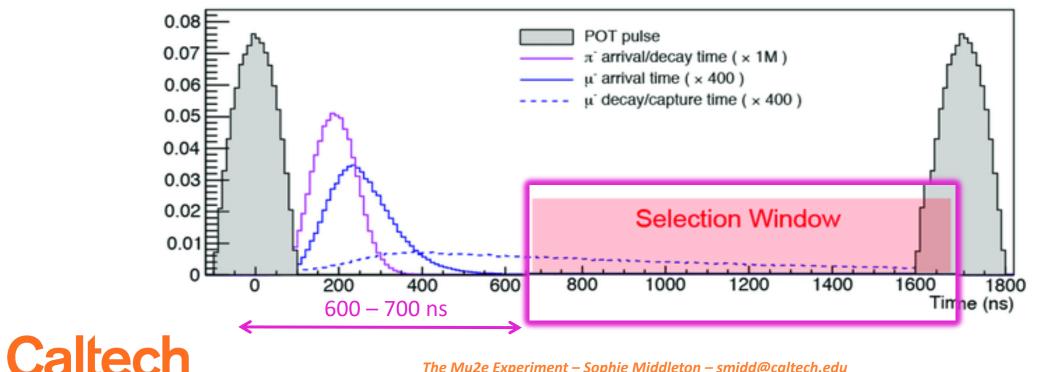
Radiative Pion Capture Backgrounds

- Radiative pion capture backgrounds: π^- + N (A, Z) $\rightarrow \gamma^{(*)}$ + N (A, Z 1) followed by $\gamma^{(*)} \rightarrow e^+$ + e^- .
- Pion lifetime 26 ns at rest. Pulsed proton beam (250 ns wide, pulses 1695 ns apart) \rightarrow wait out pion decay.
- In addition, upstream extinction removes out-of-time protons.


Caltech

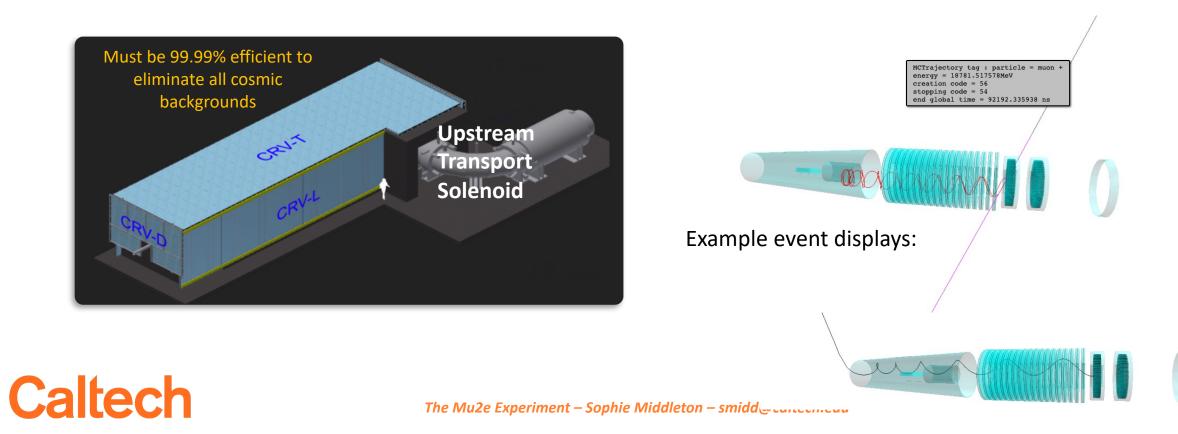
Delayed live-gate helps remove pion and beam backgrounds.

Radiative Pion Capture Backgrounds

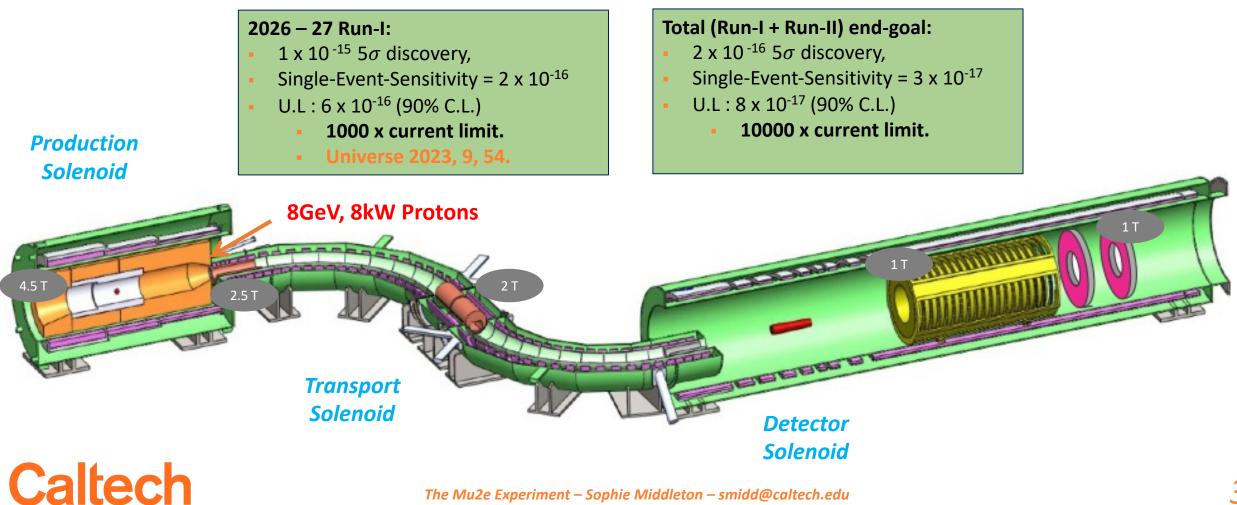

- Radiative pion capture backgrounds: π^- + N (A, Z) $\rightarrow \gamma^{(*)}$ + N (A, Z 1) followed by $\gamma^{(*)} \rightarrow e^+$ + e^- .
- Pion lifetime 26 ns at rest. Pulsed proton beam (250 ns wide, pulses 1695 ns apart) \rightarrow wait out pion decay.
- In addition, upstream extinction removes out-of-time protons.

Radiative Pion Capture Backgrounds

- Radiative pion capture backgrounds: $\pi^- + N (A, Z) \rightarrow \gamma^{(*)} + N (A, Z 1)$ followed by $\gamma^{(*)} \rightarrow e^+ + e^-$.
- Pion lifetime 26 ns at rest. Pulsed proton beam (250 ns wide, pulses 1695 ns apart) \rightarrow wait out pion decay.
- In addition, upstream extinction removes out-of-time protons.


Delayed live-gate helps remove pion and beam backgrounds.

Cosmic Induced Backgrounds


- Cosmic-ray muons can initiate 105 MeV particles that appear to emanate from the stopping target.
- Remove using active veto (CRV) + overburden and shielding concrete surrounding the Detector Solenoid.

Active Cosmic Ray Veto system is key to eliminating cosmic induced backgrounds.

Mu2e: Data taking

- Mu2e is approaching commissioning next year, data-taking begins in 2026:
- Need to stop $O(10^{18})$ and have << 1 background event

Status Update

Solenoids

- Production Solenoid:
 - Consists of 3 coils, all wound at vendor.
 - Undergoing final assembly.
 - Arrives at Fermilab in early 2024.

Outer thermal shield panels now installed with MLI and interconnected

Heat & Radiation Shield

Dry run from a couple months ago

Now installing MLI around cold mass

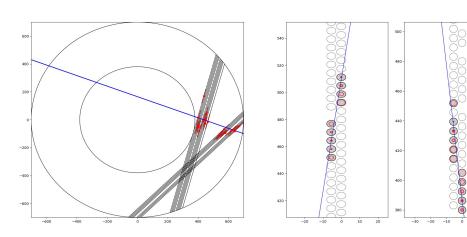
Solenoids

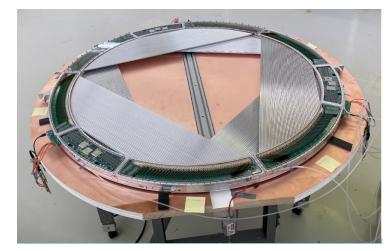
Transport Solenoid:

- Assembly being completed on-site (located in HAB).
- Moved to Mu2e Hall in imminently.

Solenoids

- Detector Solenoid:
 - All coils completed at vendor.
 - Cold mass cryo. supports prepared
 - Delivery to Fermilab expected mid-2024.




Mini cold mass: coils 1-4 bolted together

Tracker

- All 20736 straws produced.
- All 216 panels produced. Now working through QC.
- 30 / 36 planes are built.
- Cosmic ray tests carried out with a single plane and full readout system for 3 years.

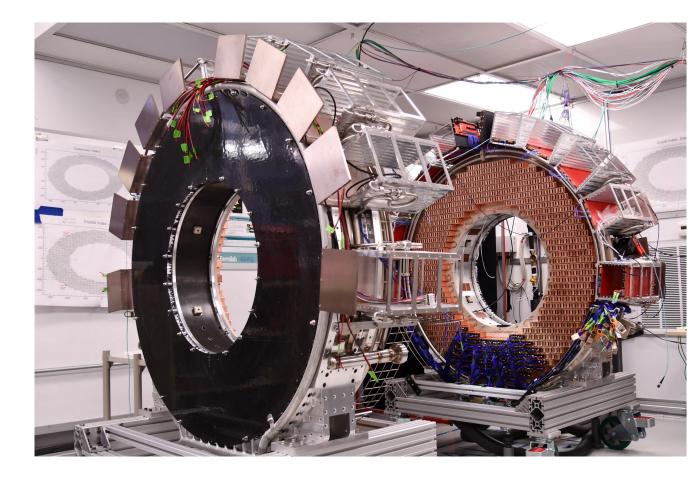
THE CITY UNIVERSITY

OF NEW YORK

UNI

38

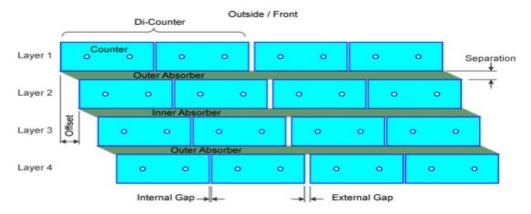
The Mu2e Experiment – Sophie Middleton – smidd@Caltech.edu

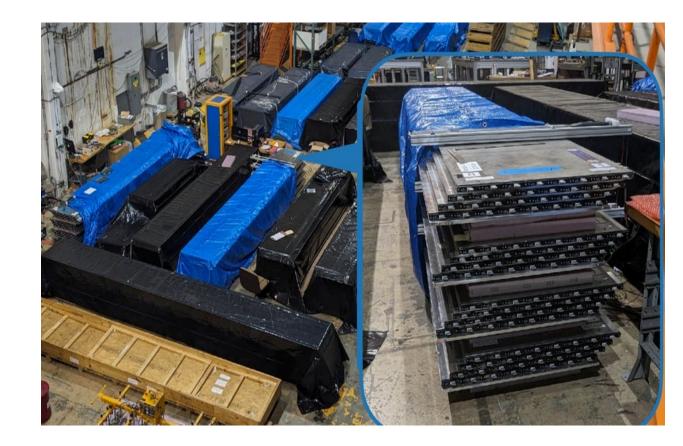

Calorimeter

Calorimeter is vital for providing:

- Particle identification,
- Fast online trigger filter,
- Seed for track reconstruction.

Design:


- 2 x 674 CsI crystals in 2 disks, each coupled to 2 SiPMs.
 Both disks
- Have crystals and SiPMs installed.
- 450 ROU's installed.
- Cabling underway.

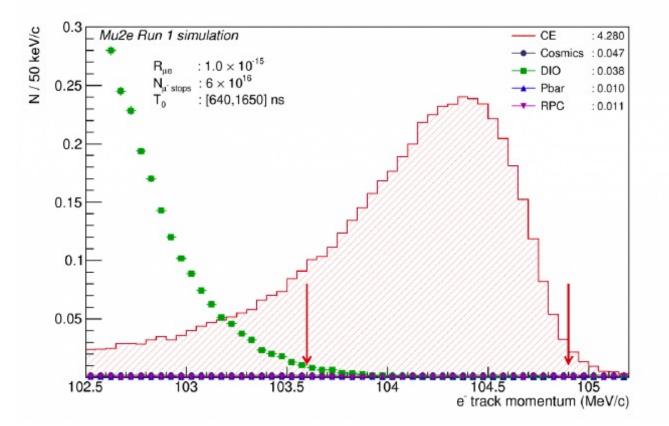


Cosmic Ray Veto System

- All 5344 di-counters produced.
- All modules produced.
- Cosmic ray tests underway at Fermilab.

The Mu2e Experiment – Sophie Middleton – smidd@Caltech.edu

- Mu2e will search for the CLFV in muon to electron conversion with a 90% CL upper limit of < 8 x 10⁻¹⁷.
- Muon CLFV channels offer deep indirect probes into BSM. Discovery potential over a wide range of BSM models.
- Mu2e commissioning with cosmics begins in 2024, commissioning with beam in 2025 and physics data taking begins in 2026.
- Looking further ahead the proposed Mu2e-II and AMF experiments will help elucidate any signal and push to higher mass scales.


Plenty of opportunities for postdocs and new collaborators to commission a new experiment! https://mu2e.fnal.gov/ Thank you for listening! Any Questions?

Additional Material

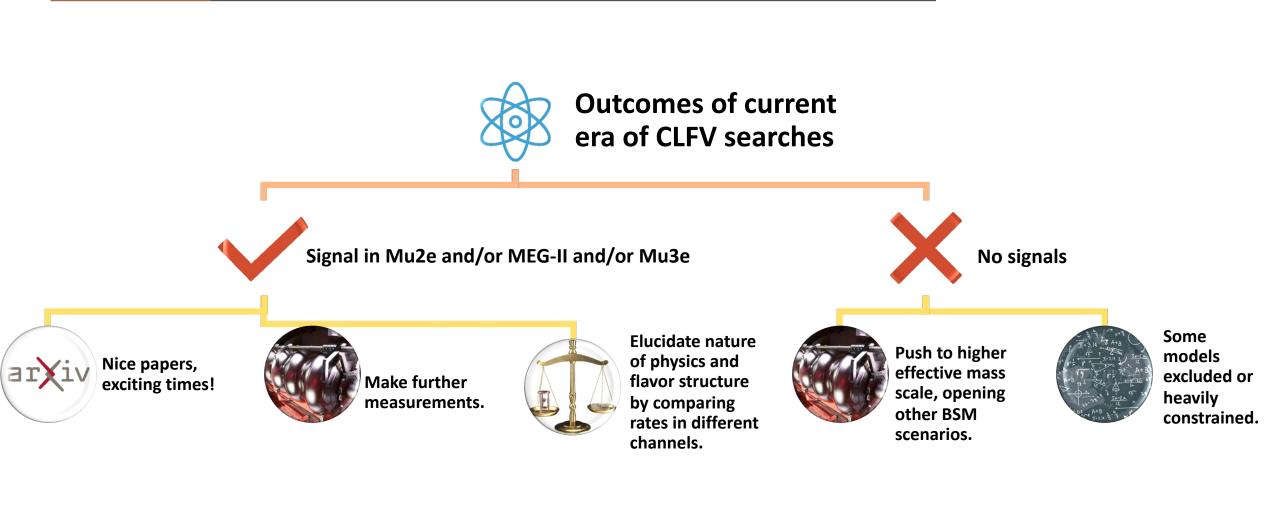
Signal & Backgrounds

Expected signal ($R_{\mu e} = 10^{-15}$) and DIO spectra from Run_I simulation (~10% of final dataset, includes resolution and energy loss effects):

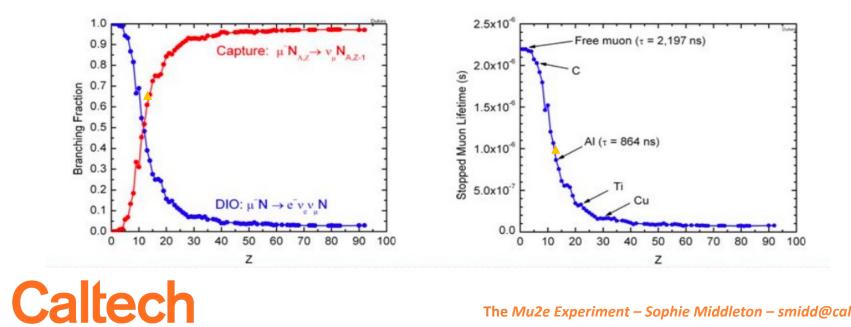
Run-I Sensitivity of Mu2e: Universe 2023, 9, 54.

Targets

Production target: resides in Production Solenoid, stops 8 GeV protons, produces pions.

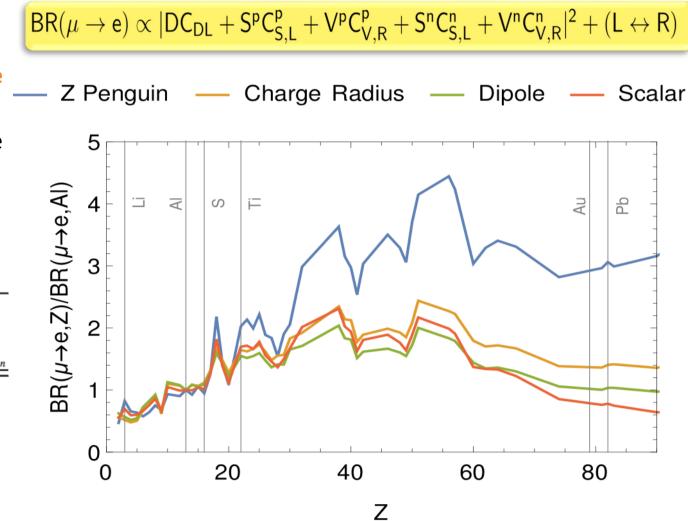


Muon Stopping target: resides in Detector Solenoid, stops muons, potentially produces signal conversion electrons.



Possibilities

Mu2e: Why Al?


Practical Advantages	Physics Advantages
Chemically Stable	Conversion energy such that only tiny fraction of photons produced by muon radiative capture.
Available in required size/shape/thickness	Muon lifetime long compared to transit time of prompt backgrounds.
Low cost	Conversion rate increases with atomic number, reaching maximum at Se and Sb, then drops. Lifetime of muonic atoms decreases with increasing atomic number.
	Lifetime of muonic atom sits in "goldilocks" region i.e. neither longer than 1700 ns pulse spacing and greater than our pionic live gate.

The lifetime of a muon in a muonic atom decreases with increasing atomic number.

$N\mu^- \rightarrow Ne^-$: Complementarity in Target Materials

Kitano et al 2002: arXiv:hep-ph/0203110v4

Overlap with nucleus probes form factors and reveals the nature of the interaction.

 \rightarrow can elucidate type of physics through looking at relative conversion rate.

	S	D	V1	V ²
$\frac{B(\mu \rightarrow e, \mathrm{Ti})}{B(\mu \rightarrow e, \mathrm{Al})}$	$1.70 \pm 0.005_{y}$	1.55	1.65	2.0
$\frac{B(\mu \rightarrow e, \text{Pb})}{B(\mu \rightarrow e, \text{Al})}$	$0.69\pm0.02_{ ho_n}$	1.04	1.41	$2.67\pm0.06_{\rho_n}$

y = nuclear scalar form factor, ρ_n = nuclear neutron density

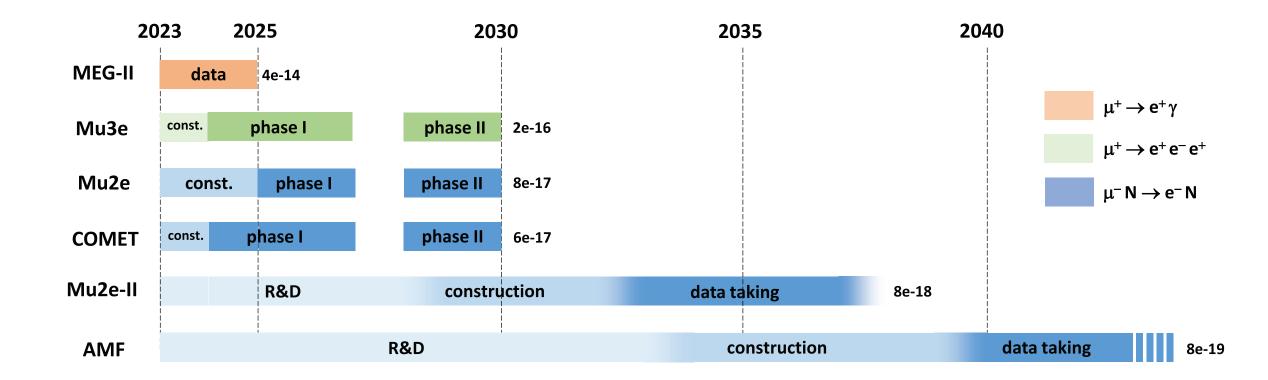
Higher Z target provides most splitting!

Caltech

The Mu2e Experiment – Sophie Middleton – smidd@caltech.edu

Next Generation Searches

Proposed multi-decade muon CLFV at Fermilab which would utilize PIP-II and ACE 2GeV ring:


Mu2e-II [see: arXiv: 2203.07569 [hep-ex]] (mid-2030s):

- Similar design to Mu2e, reuses much of the hardware but requires new production target and detector systems.
- Uses pulsed beam as necessary to remove pion backgrounds.
- Lots or R&D on-going including 2 LDRD proposals: tracker and production target.

AMF [see: arXiv: 2203.08278 [hep-ex]] (mid 2040s):

- A multi purpose muon facility which would search for all three muon CLFV channels at Fermilab.
- Would utilize a fixed field alternating (FFA) gradient synchrotron which would provide:
 - Monoenergetic beam of central momentum 20-40 MeV/c: thin target, minimizing material effects, retaining momentum resolution.
 - Pure muon beam: don't need the pulsed beam and delayed signal window.
 - Can utilize a high Z material to elucidate physics if signal at Mu2e/COMET or Mu2e-II.
 - Has smaller decay branching fraction.
- R&D required and lots of opportunities to get involved.

Timelines

