Lepton flavor violation with tau leptons

Julian Heeck

TAU2023
Louisville, Kentucky
12/05/2023

University IRGINIA

Standard Model of Particle Physics

[wikipedia]

$$
\begin{aligned}
& \text { electron } \\
& \text { neutrino }
\end{aligned}
$$

Englert \& Higgs '13

Julian Heeck - Tau LFV

Symmetries of the Standard Model

- Rephasing lepton and quark fields:

$$
\begin{gathered}
\mathrm{U}(1)_{\mathrm{B}} \times \mathrm{U}(1)_{\mathrm{L}_{\mathrm{e}}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}} \times \mathrm{U}(1)_{\mathrm{L}_{\tau}} \\
= \\
\mathrm{U}(\mathrm{~L})_{\mathrm{B}+\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{B}-\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}} .
\end{gathered}
$$

- Broken non-perturbatively, but unobservable. [t Hooft, PRL ‘76]
- True accidental global symmetry:

$$
\mathbb{Z}_{3}^{(\mathrm{B}+\mathrm{L}) / 2} \times \mathrm{U}(1)_{\mathrm{B}-\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}} .
$$

Symmetries of the Standard Model

- Rephasing lepton and quark fields:

$$
\begin{gathered}
\mathrm{U}(1)_{\mathrm{B}} \times \mathrm{U}(1)_{\mathrm{L}_{\mathrm{e}}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}} \times \mathrm{U}(1)_{\mathrm{L}_{\tau}} \\
= \\
\mathrm{U}(\mathrm{~L})_{\mathrm{B}+\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{B}-\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}} .
\end{gathered}
$$

- Broken non-perturbatively, but unobservable. [t Hooft, PRL'76]
- True accidental global symmetry:

$$
\mathbb{Z}_{3}^{(\mathrm{B}+\mathrm{L}) / 2} \times \mathrm{U}(1)_{\mathrm{B}-\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\boldsymbol{e}}}
$$

Lepton flavor conservation!

Neutrino oscillations = flavor violation

- Observations of $v_{\alpha} \rightarrow v_{\beta}$ prove that $\mathrm{M}_{\mathrm{v}} \neq 0$ and

$$
\mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}}
$$

is broken!

- Amplitudes for charged lepton flavor violation are suppressed:

$$
\mathcal{A}\left(\ell_{\alpha}^{-} \rightarrow \ell_{\beta}^{-}\right) \propto \frac{\left(\mathrm{M}_{\nu} \mathrm{M}_{\nu}^{\dagger}\right)_{\alpha \beta}}{\mathrm{M}_{w}^{2}}<10^{-24}
$$

Neutrino mass \nRightarrow charged LFV!

- Neutrino-mass induced charged LFV is unobservable.

Observation of CLFV \rightarrow beyond SM and beyond M_{v} !

- $\mathrm{M}_{\mathrm{v}} \Leftrightarrow \mathrm{CLFV}$ connection possible but not necessary. \Rightarrow Can ignore M_{v} in CLFV studies!
- (How) Is $\mathrm{U}(1) \mathrm{L}_{\mu}-\mathrm{L}_{\tau} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}}$ broken in CLFV?
- Heavy new physics: SMEFT! [Lew \& Volkas, 9410277; JH, 16]
- 888 CLFV operators at d=6:

$$
\frac{C_{\mathrm{ijnm}}}{\Lambda^{2}} \ell_{\mathrm{i}}^{c} \ell_{\mathrm{j}} \mathrm{e}_{\mathrm{n}}^{c} \ell_{\mathrm{m}}, \frac{\mathrm{C}_{\mathrm{ijnm}} \Lambda^{2} \ell_{\mathrm{i}}^{c} \ell_{\mathrm{j}} \mathrm{~d}_{\mathrm{n}}^{c} \mathrm{~d}_{\mathrm{m}}, \frac{\mathrm{C}_{\mathrm{ij}}}{\Lambda^{2}} \ell_{\mathrm{i}}^{c} \sigma_{\alpha \beta} \ell_{\mathrm{j}} \mathrm{HF}^{\alpha \beta}, \ldots . .}{}
$$

[Weinberg ‘79; Buchmüller \& Wyler, ‘86; Grzadkowski++, '10; Fonseca, ‘17]

CLFV = breaking of $\mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}}$

CLFV = breaking of $\mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}}$
(

CLFV = breaking of $\mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}}$

Dimension 6 operators

Impose $\mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}}$ to make $\tau \rightarrow \mathrm{ee} \bar{\mu}$ dominant.

Impose lepton triality \mathbb{Z}_{3}. (See talk by Innes Bigaran.)

Impose \mathbb{Z}_{2} under which e is odd.

Impose \mathbb{Z}_{2} under which μ is odd.

Etc. etc. etc.

Currently being probed:

$\Delta \tau=2$ operators

- 10 complex $\mathrm{d}=6$ SMEFT operators, e.g. $\bar{\tau} \bar{\tau} \mu \mu$:

$$
\mathrm{y}_{\tau \mu \tau \mu}^{\mathrm{LL}} \overline{\mathrm{~L}}_{\tau} \gamma^{\alpha} \mathrm{L}_{\mu} \overline{\mathrm{L}}_{\tau} \gamma_{\alpha} \mathrm{L}_{\mu}+\mathrm{y}_{\tau \mu \tau \mu}^{\mathrm{LR}} \overline{\mathrm{~L}}_{\tau} \gamma^{\alpha} \mathrm{L}_{\mu} \bar{\ell}_{\tau} \gamma_{\alpha} \ell_{\mu}+\mathrm{y}_{\tau \mu \tau \mu}^{\mathrm{RR}} \overline{\overline{ }}_{\tau} \gamma^{\alpha} \ell_{\mu} \bar{\chi}_{\tau} \gamma_{\alpha} \ell_{\mu}
$$

- No neutrinoless decay modes, no limits for d=6 LFV op?!

$\Delta \tau=2$ operators

- 10 complex $\mathrm{d}=6$ SMEFT operators, e.g. $\bar{\tau} \bar{\tau} \mu \mu$:

$$
\mathrm{y}_{\tau \mu \tau \mu}^{\mathrm{L}} \mathrm{~L} \overline{\mathrm{~L}}_{\tau} \gamma^{\alpha} \mathrm{L}_{\mu} \overline{\mathrm{L}}_{\tau} \gamma_{\alpha} \mathrm{L}_{\mu}+\mathrm{y}_{\tau \mu \tau \mu}^{\mathrm{LR}} \mathrm{~L}_{\tau} \gamma^{\alpha} \mathrm{L}_{\mu} \bar{\ell}_{\tau} \gamma_{\alpha} \ell_{\mu}+\mathrm{y}_{\tau \mu \tau \mu}^{\mathrm{RR}} \bar{\ell}_{\tau} \gamma^{\alpha} \ell_{\mu} \bar{\tau}_{\tau} \gamma_{\alpha} \ell_{\mu}
$$

- No neutrinoless decay modes, no limits for d=6 LFV op?!
- For $y^{L L}$ and $y^{L R}$ still have wrong- v-flavor decays: $\tau^{-} \rightarrow \mu^{-} \nu_{\mu} \bar{\nu}_{\tau}$
- Only modifies τ lifetime, not spectrum. [JH \& M. Sokhashvili,
- Violates flavor universality, comparison with $\mu^{-} \rightarrow \mathrm{e}^{-} \nu_{\mu} \bar{\nu}_{\mathrm{e}}$ gives limits around $\left|y^{L L, L R}\right|<(0.6 \mathrm{TeV})^{-2}$. (See tak by P. Feichtinger.)
- y^{RR} is difficult, either $Z_{\rightarrow} \bar{\tau} \bar{\tau} \mu \mu$ or $\mu \mu \rightarrow \tau \tau$ at new collider, or analyze UV completions (Z^{\prime} or k^{++}). (See tak by w. Altmannshofer.) [Altmannshofer++, PLB '16; Altmannshofer++, 2205.10576; Bigaran ++, 2212.09760]

Not done with d=6 LFV yet!

Currently being probed:
Future:

$\tau \rightarrow \mu-\mu \mu^{-} e^{+} ?$

- Impose $L_{\mu}+4 L_{e}-5 L_{T}$ to kill other LFV.
- Not difficult, but rate is suppressed:
$\mathrm{BR} \sim 5 \times 10^{-10}\left(\frac{30 \mathrm{GeV}}{\mathrm{m}_{\mathrm{s}}}\right)^{12}$.

- Secretly dimension 10 operator.
- Better constraints on S from $Z \rightarrow$ SS etc.? [JH, in progress]

Requires full models

Baryon number violation

- So far assumed $\Delta B=0$, but can also do LFV with $\Delta B \neq 0$.
- Example: proton decay $(\Delta B=1)$.
- Super-K limits on $p \rightarrow \mathrm{e}^{+} \pi^{0}, \mu^{+} \pi^{0}$ are 10^{34} years!
- Probes scales up to $10^{15} \mathrm{GeV}$!
- Future: JUNO (China), DUNE (US), Hyper-K (Japan).

$\Delta B=\Delta L=1$

$\Delta B=\Delta L=1$

$\Delta B=\Delta L=1$

Currently being probed:
Old results: Doable:
$\Delta B=\Delta L=1$

Currently being probed:
Old results: Doable:

Currently being probed:
Old results: Doable:
$\Delta B=\Delta L=1$
Better:

$\Delta \tau=\Delta B=1$ operators

- $d=6$ operators: $y^{1} \mathrm{duQL}_{\tau}+\mathrm{y}^{2} \mathrm{QQQL}_{\tau}+\mathrm{y}^{3} \mathrm{QQu}_{\tau}+\mathrm{y}^{4} \mathrm{duu}_{\tau}$
- All induce $\tau^{-} \rightarrow \overline{\mathrm{p}} \pi^{0}, \overline{\mathrm{p}} \eta$.
- But y^{1} and y^{2} immediately give $\mathrm{n} \rightarrow \bar{\nu}_{\tau} \pi^{0}, \bar{\nu}_{\tau} \eta$.
- $\mathrm{p} \rightarrow \bar{\nu}_{\tau} \pi^{+}$probes a linear combination of y^{3} and y^{4}.
- Last linear combination induces

$\mathrm{p} \rightarrow \bar{\nu}_{\tau} \pi^{+} \eta$, only ancient inclusive limits! [JH \& Watkins, in progress]
- Still, even with finetuning it seems difficult to get $\tau^{-} \rightarrow \overline{\mathrm{p}} \pi^{0}, \overline{\mathrm{p}} \eta$.
- Currently analyzing $d>6 \Delta \tau=\Delta B=1$ operators in analogy.

Don't be discouraged to look for $\Delta \mathrm{B}$ tau decays!

Probing light particles

- SMEFT only works for heavy new particles!
- Light new particles X give new signatures:
- $\mu \rightarrow e X$ or $T \rightarrow \ell X$, followed by (displaced) $X \rightarrow \ell^{+} \ell^{-}, y y$? [JH \& Rodejohann, PLB '18; Cheung++, JHEP '21]
- Mu3e and Belle II can improve limits, maybe others too?
[i Tormo++, PRD '11; Uesaka, PRD '20; Calibbi, Redigolo, Ziegler, Zupan, JHEP '21]
- Light particles as mediators change rate expectations.
- X = axion/ALP/majoron/familon/Z', connected to DM?
- Or: SMEFT + X.
[Georgi, Kaplan, Randall, '86; Brivio++, '17; Dror, Lasenby, Pospelov, '17 \& '19]
Far from finished!

Example: Majoron

Summary

- Charged LFV gives info complementary to v oscillations.
- Tau LFV fertile ground for new-physics searches:
- Access to many directions in flavor space.
- Essential to study fate of $\mathrm{U}(1)_{L_{\mu}-L_{\tau}} \times \mathrm{U}(1)_{L_{\mu}+L_{\tau}-2 L_{e}}$ even if $\mu \rightarrow$ ey found tomorrow.
- Future goals: tackle $\Delta \tau=2$ and $d>6$ operators at Belle-II and future colliders.
- Light new physics open new avenues, can probe particles up to $m_{\text {t }}$.

Explore every corner of our lamppost!

Backup

Effective field theory view

- SM symmetry: $\mathrm{G}=\mathrm{U}(1)_{\mathrm{B}-\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}}$.
- Effective field theory with Majorana v :
conserves G
violates G
could conserve G or subgroup \Rightarrow 'weird' channels dominate!?

Example: $\tau^{-} \rightarrow \mathrm{e}^{-} \mathrm{e}^{-} \mu^{+}$

- Conserves $L_{\mu}-L_{\tau}$, so impose this!

	$U(1)_{Y}$	$U(1)_{L_{\mu}-L_{\tau}}$
k^{++}	+2	0
S	0	+1
$N_{e, \mu, \tau}$	0	$0,+1,-1$

- Simplest UV model:

$$
\left(g_{\mu \tau} \bar{\mu}_{R}^{c} \tau_{R}+g_{e e} \bar{e}_{R}^{c} e_{R}\right) k^{++}+y \bar{L} H N_{R}+\frac{1}{2} \bar{N}_{R}^{c}\left(M_{R}^{\text {sym }}+y_{S}\langle S\rangle\right) N_{R} .
$$

- Only $\tau \rightarrow \mathrm{e}^{-}-\mu^{+}$is unsuppressed by M_{v}.
v oscillations but approximate symmetry in ℓ^{-}sector.

Flavor violating decays

- Prime example: $\mu_{\rightarrow \mathrm{ey}}$ @ MEG.
- Observation = new particles (beyond SM and M_{v}).
- $\mu \rightarrow e$ conversion @ Mu2e can probe scales up to $10^{7} \mathrm{GeV}$.

LFV	process	current	future	\exp	
\\|	$\mu \rightarrow e \gamma$	4.2×10^{-13}	6×10^{-14}	MEG-II	
3	$\mu \rightarrow e \bar{e} e$	1.0×10^{-12}	10^{-16}	Mu3e	
㐾	$\mu \rightarrow e$ conv.	$\mathcal{O}\left(10^{-12}\right)$	10^{-16}	Mu2e, COMET	
11	$h \rightarrow e \bar{\mu}$	6.1×10^{-5}	10^{-5}	LHC	
4	$Z \rightarrow e \bar{\mu}$	7.5×10^{-7}	10^{-10}	FCC-ee	
\unlhd	had $\rightarrow e \bar{\mu}(\mathrm{had})$	4.7×10^{-12}	10^{-12}	NA62	

Flavor violating decays

- Produce tauons at B factories (BaBar, Belle, LHCb).
- Observation = new particles (beyond SM and M_{v}).
- t- \rightarrow e-e +e - Belle II will probe scales up to $2 \times 10^{4} \mathrm{GeV}$.

LFV	process	current	future	\exp
$\stackrel{\rightharpoonup}{\square}$	$\tau \rightarrow e \gamma$	3.3×10^{-8}	10^{-9}	Belle II
1	$\tau \rightarrow e \bar{\ell} \ell$	2.7×10^{-8}	10^{-9}	Belle II
\checkmark	$\tau \rightarrow e \mathrm{had}$	$\mathcal{O}\left(10^{-8}\right)$	10^{-9}	Belle II
II	$h \rightarrow e \bar{\tau}$	4.7×10^{-3}	10^{-4}	LHC
\wedge	$Z \rightarrow e \bar{\tau}$	9.8×10^{-6}	10^{-9}	FCC-ee
\unlhd	had $\rightarrow e \bar{\tau}($ had $)$	$\mathcal{O}\left(10^{-6}\right)$	-	Belle II

Upcoming CLFV

Figure 47. - Projected time lines for different projects searching for CLFV decays. MEG IIis expected to start data taking in 2018 after an engineering run in 2017; Mu3e magnet and detectors are expected at the end of 2019; Mu2e foresees three years of data taking starting in 2021; COMET Phase-I is expected to start commissioning and data taking in 2018 for two-three years, followed by a stop to develop and deploy the beamline and detectors for Phase-II; DeeMe is expected to start soon and take data with graphite and silicon carbide targets in sequence; Belle II is schedule to start data taking at end 2018.

Probing light particles

- Mu3e: $\operatorname{BR}(\mu \rightarrow e X)$ from 10^{-6} to 10^{-8}.
- Belle II: $\operatorname{BR}(\tau \rightarrow \ell \times)$ from 10^{-3} to 10^{-5}. [JH, PLB '16]
- Followed by (displaced) $X \rightarrow \ell^{+} \ell^{-}$, VY? [JH, Rodejohann, PLB '18]
- Example: Majoron.
- Pseudo-Goldstone boson of lepton number.
- Potential dark matter candidate.
- Tree-level coupling only to neutrinos.

[JH, Garcia-Cely, JHEP '17]

$\mu \rightarrow \mathrm{e} X$ with $X \rightarrow$ visible

- Take Xey $_{5} \mathrm{e} \mathrm{m}_{\mathrm{e}} / \wedge_{\mathrm{ee}}$.
- Decay length determines signature.
- Displaced vertex gives new observable. [JH, Rodejohann, PLB ‘18]

- Muon at rest:

$$
\gamma c \tau \simeq \frac{\pi \mathrm{~m}_{\mu} \Lambda_{\mathrm{ee}}^{2}}{\mathrm{~m}_{\mathrm{e}}^{2} \mathrm{~m}_{X}^{2}} \simeq 2.5 \mathrm{~cm}\left(\frac{\Lambda_{e e}}{100 \mathrm{GeV}}\right)^{2}\left(\frac{10 \mathrm{MeV}}{\mathrm{~m}_{\times}}\right)^{2}
$$

Sub-GeV X with ee coupling allowed?
$\mu \rightarrow e \mathrm{X}$ with $\mathrm{X} \rightarrow \overline{\mathrm{e}} \mathrm{e}$

- Decay length typically below cm . \Rightarrow looks prompt.
- Below beam dump: $\wedge_{\mathrm{ee}}>30 \mathrm{TeV}$; mostly invisible, but some DV!

$\operatorname{BR}(\mu \rightarrow \mathrm{eX}) \operatorname{BR}(\mathrm{X} \rightarrow \mathrm{ee})\left(1-\mathrm{P}\left(\mathrm{I}_{\text {dec }}\right)\right)$

$$
\simeq \operatorname{BR}(\mu \rightarrow \mathrm{eX}) \frac{\mathrm{I}_{\mathrm{dec}}}{\gamma \mathrm{c} \tau} .
$$

Possible in Mu3e!

- Decay length always below cm. \Rightarrow looks prompt.
- Below beam dump: supernova constraints!
- Prompt channel

still interesting, maybe
$\log _{10}\left(m_{X} / \mathrm{GeV}\right)$ MEG(II) or Mu3e extension?
[Limits: Dolan et al, JHEP '17]

Muons difficult, taus easier.

$\tau \rightarrow e X$ with $X \rightarrow$ visible

- Tau at rest, higher X boost.
- Arbitrary decay lengths possible.
- Similar for $X \rightarrow$ ee, $\mu \mu, \mu \mathrm{e}$.
- Worthwhile in LHCb and Belle (II).

[Limits: Dolan et al, JHEP '17]

New signatures from light physics!

Neutrino mass \Rightarrow charged LFV?

- $\mathrm{SM}+$ Dirac neutrinos: $\mathrm{L}=\mathrm{L}_{\mathrm{SM}}-\left(\mathrm{y} \overline{\mathrm{L}} \mathrm{H} \nu_{\mathrm{R}}+\right.$ h.c. $)+\mathrm{i} \bar{\nu}_{\mathrm{R}} \not \partial_{\mathrm{R}}$

$$
\begin{aligned}
\mathrm{m}_{\nu} & =\mathrm{y}\langle\mathrm{H}\rangle \\
& =\mathrm{U} \operatorname{diag}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right) \mathrm{V}_{\mathrm{R}} \\
& ! \\
& \vdots \mathrm{eV}
\end{aligned}
$$

- All CLFV is GIM suppressed:

$$
\frac{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \gamma\right)}{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \nu_{\alpha} \bar{\nu}_{\beta}\right)} \simeq \frac{3 \alpha_{\mathrm{EM}}}{32 \pi}\left|\sum_{\mathrm{j}=2,3} \mathrm{U}_{\alpha \mathrm{j}} \frac{\Delta \mathrm{~m}_{\mathrm{j} 1}^{2}}{\mathrm{M}_{\mathrm{W}}^{2}} \mathrm{U}_{\mathrm{j} \beta}^{\dagger}\right|^{2}<5 \times 10^{-53}
$$

[1977: Petcov; Bilenky, Petcov, Pontecorvo; Marciano, Sanda; Lee, Pakvasa, Shrock, Sugawara]

Seesaw mass \Rightarrow charged LFV?

- $\mathrm{SM}+$ seesaw neutrinos: $\mathrm{L}=\mathrm{L}_{\mathrm{SM}}+\mathrm{i} \overline{\mathrm{N}}_{\mathrm{R}} \not \partial \mathrm{N}_{\mathrm{R}}$

$$
\begin{aligned}
& -(\frac{1}{2} M_{R} \bar{N}_{R}^{c} N_{R}+\underbrace{y \bar{L} H N_{R}}_{m_{D} \overline{\bar{\nu}_{L}} N_{R}}+\text { h.c. }) \\
& \hline
\end{aligned}
$$

$$
M_{N} \simeq M_{R}, \quad M_{\nu} \simeq-m_{D} M_{R}^{-1} m_{D}^{\top}=U^{*} \operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) U^{\dagger} .
$$

- Majorana neutrinos!
- LFV:

$$
\frac{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \gamma\right)}{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \nu_{\alpha} \bar{\nu}_{\beta}\right)} \simeq \frac{3 \alpha_{\mathrm{EM}}}{8 \pi} \underbrace{\substack{\text { Not true with } \\
\text { fine-utuing or } \\
\text { structure in in } \mathrm{m}_{0} .}}_{\begin{array}{c}
\mathcal{O}\left(\mathrm{M}_{\nu}^{4} / \mathrm{m}_{\mathrm{D}}^{4}\right)
\end{array}\left|\left(\mathrm{m}_{\mathrm{D}} \mathrm{M}_{\mathrm{R}}^{-2} \mathrm{~m}_{\mathrm{D}}^{\dagger}\right)_{\alpha \beta}\right|^{2}}
$$

Neutrino-mass models can give LFV

$$
L_{\text {seesaw }}=L_{S M}+i \bar{N}_{R} \not \partial N_{R}-\left(\frac{1}{2} M_{R} \bar{N}_{R}^{c} N_{R}+m_{D} \bar{\nu}_{L} N_{R}+\text { h.c. }\right)
$$

$\Rightarrow \quad M_{\nu} \simeq-m_{D} M_{R}^{-1} m_{D}^{\top} \quad \& \quad B R\left(\ell_{\alpha} \rightarrow \ell_{\beta} \gamma\right) \propto\left|\left(m_{D} M_{R}^{-2} m_{D}^{\dagger}\right)_{\alpha \beta}\right|^{2}$.

- One to one correspondence

$$
\left\{m_{D}, M_{R}\right\} \leftrightarrow\left\{M_{\nu}, m_{D} M_{R}^{-2} m_{D}^{\dagger}\right\} . \quad \begin{aligned}
& \text { [Broncano, Gavela, Jenkins, } \\
& \text { hep-ph/0210271] }
\end{aligned}
$$

- Matrix structure decouples LFV from M_{v}.

LFV complementary to M_{v} !

- Fairly generic conclusion, makes it difficult to predict LFV.

Scalar-triplet seesaw

[Konetschny \& Kummer ‘77; Magg \& Wetterich, ‘80; Schechter \& Valle ‘80; Cheng \& Li, ‘80; Mohapatra \& Senjanovic, ‘81]

$$
\mathrm{L}=\mathrm{L}_{\mathrm{SM}}+\left|\mathrm{D}_{\alpha} \Delta\right|^{2}-\left(\mathrm{y} \overline{\mathrm{~L}}^{\mathrm{c}} \Delta \mathrm{~L}+\mu \mathrm{H} \Delta \mathrm{H}+\text { h.c. }\right)
$$

$\Rightarrow \quad\left(\mathrm{M}_{\nu}\right)_{\alpha \beta} \simeq \mathrm{y}_{\alpha \beta} \frac{2 \mu \mathrm{v}^{2}}{\mathrm{M}_{\Delta}^{2}} \quad \& \quad \mathrm{BR}\left(\ell_{\alpha} \rightarrow \ell_{\mathrm{i}} \ell_{\mathrm{j}} \bar{\ell}_{\mathrm{k}}\right) \propto\left|\mathrm{y}_{\alpha \mathrm{k}}\right|^{2}\left|\mathrm{y}_{\mathrm{ij}}\right|^{2} / \mathrm{M}_{\Delta}^{4}$.
[Pich, Santamaria, Bernabeu, ‘84; Abada++, 0707.4058]

Prediction of LFV ratios via M_{v} !

CDF's W-mass first hint for this triplet with $\mathrm{O}(100 \mathrm{GeV})$ mass? [Heeck, 2204.10274]

