New Physics in Hadronic τ decays

[Based on: V. Cirigliano, D. Díaz-Calderón, A. Falkowski, M. González-Alonso, & A. Rodríguez-Sánchez, JHEP 04 (2022) 152]

David Díaz Calderón

IFIC (CSIC-UV)

Motivation

Why hadronic τ decays?

 \longrightarrow They are the only processes that probe the D au sector

 \longrightarrow They are used to extract some fundamental SM parameters. There are inconsistencies with other determinations $\rightarrow V_{us}$

 \longrightarrow Anomalies in $B \rightarrow D^{(*)}\tau \bar{\nu}_{\tau} \longrightarrow$ some BSM models predict new particles coupled to both τ leptons and light quarks

Theoretical Framework

$$\begin{aligned} \mathcal{L}_{WEFT} &= -\frac{\mathbf{G}_{F}\mathbf{V}_{uD}}{\sqrt{2}} \Bigg[\left(1 + \boldsymbol{\epsilon}_{L}^{D\ell}\right) \bar{\ell}\gamma_{\mu}(1 - \gamma_{5})\nu_{\ell} \cdot \bar{u}\gamma^{\mu}(1 - \gamma_{5})D \\ &+ \boldsymbol{\epsilon}_{R}^{D\ell} \ \bar{\ell}\gamma_{\mu}(1 - \gamma_{5})\nu_{\ell} \cdot \bar{u}\gamma^{\mu}(1 + \gamma_{5})D + \ \bar{\ell}(1 - \gamma_{5})\nu_{\ell} \cdot \bar{u} \Bigg[\boldsymbol{\epsilon}_{S}^{D\ell} - \boldsymbol{\epsilon}_{P}^{D\ell}\gamma_{5} \Bigg] D \\ &+ \frac{1}{4} \boldsymbol{\hat{\epsilon}}_{T}^{D\ell} \ \bar{\ell}\sigma_{\mu\nu}(1 - \gamma_{5})\nu_{\ell} \cdot \bar{u}\sigma^{\mu\nu}(1 - \gamma_{5})D \Bigg] + \text{h.c.} \end{aligned}$$

Hadronic τ decays as New Physics Probes

Sensitivities of the different channels:

 $\tau \to \pi \nu, \tau \to K \nu \longrightarrow \epsilon_L^{D\tau} - \epsilon_L^{De}, \epsilon_R^D \text{ and } \epsilon_P^{D\tau}.$

$$\tau \to \pi \pi \nu \longrightarrow \epsilon_L^{d\tau} - \epsilon_L^{de} \text{ and } \epsilon_T^{d\tau}. \ \epsilon_S^{d\tau} \text{ is suppressed.}$$

$$\tau \to \eta \pi \nu \longrightarrow \epsilon_S^{d\tau}$$
 enhanced \to only constrains $\epsilon_S^{d\tau}$.

Non-strange inclusive \longrightarrow Isospin Symmetry $\rightarrow \epsilon_L^{d\tau} - \epsilon_L^{de}$, $\epsilon_R^{d\tau}$ and $\hat{\epsilon}_T^{d\tau}$.

Strange inclusive
$$\longrightarrow$$
 SU(3) $\rightarrow \epsilon_L^{s\tau} - \epsilon_L^{se}$, $\epsilon_R^{s\tau}$, $\hat{\epsilon}_T^{s\tau}$, $\epsilon_S^{s\tau}$ and $\epsilon_P^{s\tau}$.

Strategy: compute $\epsilon_X^{D\ell}$ dependence of observables \rightarrow compare with experiment to get a bounds on L.C. of $\epsilon_X^{D\ell}$ s \rightarrow minimize a χ^2 function to get bounds on individual $\epsilon_X^{D\ell}$

$$\tau \to \pi \pi \nu$$

$$a_{s}(s) \sim \Delta_{PP'}^{2}/(m_{u} - m_{d}) \to 0 \text{ for } \pi \pi \text{ channel}$$

$$\frac{d\Gamma}{ds} = \left[\frac{d\hat{\Gamma}}{ds}\right]_{SM} \left(1 + 2(\epsilon_{L}^{D\tau} + \epsilon_{R}^{D\tau} - \epsilon_{L}^{De} - \epsilon_{R}^{De}) + a_{S}(s)\epsilon_{S}^{D\tau} + a_{T}(s)\hat{\epsilon}_{T}^{D\tau}\right)$$

$$\left[\frac{d\hat{\Gamma}}{ds}\right]_{SM} = \frac{G_{\mu}^{2}|\hat{V}_{uD}|^{2}m_{\tau}^{3}}{768\pi^{3}}S_{EW}^{had}C_{PP'}^{2}\left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2}\left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right)\lambda_{PP'}^{3/2}|F_{V}^{PP'}(s)|^{2} + 3\frac{\Delta_{PP'}^{2}}{s^{2}}\lambda_{PP'}^{1/2}|F_{S}^{PP'}(s)|^{2}\right]$$

 $F_{V,T}(s)$ need to be BSM free \longrightarrow We use $a_{\mu}^{had,LO}[\pi\pi]$ as observable

$$\frac{a_{\mu}^{\tau} - a_{\mu}^{ee}}{2a_{\mu}^{ee}} = \epsilon_{L}^{d\tau} + \epsilon_{R}^{d\tau} - \epsilon_{L}^{de} - \epsilon_{R}^{d\tau} + 0.43(8)\hat{\epsilon}_{T}^{d\tau} = 10.0(4.9) \times 10^{-3}$$

$$\begin{array}{c} \tau \to \eta \pi \nu \\ a_{s}(s) \sim (m_{\pi^{\pm}}^{2} - m_{\eta}^{2})/(m_{u} - m_{d}) & \longrightarrow \text{Enhanced scalar contribution} \\ & \downarrow \text{the scalar terms dominate the NP contribution} \\ & \text{BR}_{\exp}(\tau \to \eta \pi \nu_{\tau}) = \widehat{\text{BR}}_{\text{SM}}(\tau \to \eta \pi \nu_{\tau})(1 + \alpha \epsilon_{S}^{d\tau} + \gamma(\epsilon_{S}^{d\tau})^{2}) \\ & \tau \to \eta \pi \nu \text{ violates isospin} & \longrightarrow \text{BR}_{\exp} < 9.9 \times 10^{-5} \text{ at } 95\% \text{ CL} \\ \hline \alpha \in [3, 8] \times 10^{2} \\ & \gamma \in [0.7, 1.75] \times 10^{5} \\ \hline \text{BR}_{\text{SM}} \in [0.3, 2.1] \times 10^{-5} \end{array} \right) \\ \hline \text{Theoretical} \\ estimations \\ (HEP 12 (2017) 027) \\ \hline \theta = \left[\int_{0.05}^{40} \int_{0.02}^{40} \int_{0.00}^{40} \int_{0.01}^{40} \int_{0$$

Non-strange Inclusive

$$I_{V\pm A}^{\exp} - I_{V\pm A}^{SM} = 2\left(\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de}\right) I_{V\pm A}^{SM} \mp 4\epsilon_{R}^{d\tau} I_{A}^{SM} + 6\hat{\epsilon}_{T}^{d\tau} I_{VT}$$

$$I_{J}^{\exp}(s_{0}; n) \equiv \int_{s_{th}}^{s_{0}} \frac{ds}{s_{0}} \left(\frac{s}{s_{0}}\right)^{n} \rho_{J}^{\exp}(s)$$

$$I_{J}^{SM}(s_{0}; n) \equiv \int_{s_{th}}^{s_{0}} \frac{ds}{s_{0}} \left(\frac{s}{s_{0}}\right)^{n} \left(1 + 2\frac{s}{m_{\tau}^{2}}\right)^{-1} \frac{\ln \Pi_{VT}}{\pi m_{\tau}}(s)$$

$$\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de} - 0.88\epsilon_{R}^{d\tau} + 0.27(9)\hat{\epsilon}_{T}^{d\tau} = (9.1 \pm 8.8) \times 10^{-3}$$

$$\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de} - \delta_{R}^{de} + 1.9(1.2)\hat{\epsilon}_{T}^{d\tau} = (5 \pm 51) \times 10^{-3}$$

$$\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de} + 1.93\epsilon_{R}^{d\tau} + 1.6(1.5)\hat{\epsilon}_{T}^{d\tau} = (7.0 \pm 9.5) \times 10^{-3}$$

$$\rho_{V-A}: \omega_{1}(s) \equiv 1 - \frac{s}{s_{0}}, \omega_{2}(s) \equiv \left(1 - \frac{s}{s_{0}}\right)^{2}$$

Strange Inclusive

No $\rho_{exp}(s)$ available \rightarrow we use V_{us} as observable.

$$\frac{R_{\tau}^{d}}{|V_{ud}|^{2}} = \frac{R_{\tau}^{s}}{|V_{us}|^{2}} + \delta R_{\text{th}}^{\text{SM}}$$

$$\int$$

$$|\hat{V}_{us}|^{\text{inc}} = \left(\frac{\hat{R}_{\tau}^{s}}{\frac{\hat{R}_{\tau}^{d}}{|\hat{V}_{ud}|^{2}} - \delta R_{\text{th}}^{\text{SM}}}\right)^{1/2} = |\hat{V}_{us}| \left(1 + \delta_{\text{BSM},s}^{\text{inc}} - (1 + \eta)\delta_{\text{BSM},d}^{\text{inc}}\right)$$

 $1.00 \left(\epsilon_{L+R}^{s\tau} - \epsilon_{L+R}^{se} \right) - 1.03 \epsilon_{R}^{s\tau} - 0.38 \epsilon_{P}^{s\tau} + 0.40(13) \hat{\epsilon}_{T}^{s\tau} + 0.08(1) \epsilon_{S}^{s\tau} - 1.07 \left(\epsilon_{L+R}^{d\tau} - \epsilon_{L+R}^{de} \right) + 1.04 \epsilon_{R}^{d\tau} + 0.30 \epsilon_{P}^{d\tau} - 0.43(14) \hat{\epsilon}_{T}^{d\tau} = -(0.0171 \pm 0.0085)$

Hadronic τ Decays: fit

$$\begin{split} & \left(\begin{array}{c} \epsilon_{L}^{d\tau/e} + \epsilon_{R}^{d\tau} - \epsilon_{R}^{de} \\ \epsilon_{P}^{d\tau} \\ \epsilon_{T}^{d\tau} \\ \epsilon_{T}^{d\tau} \\ \epsilon_{T}^{s\tau/e} - \epsilon_{T}^{s\tau} - \epsilon_{R}^{se} - \frac{m_{k\pm}^{s}}{m_{(m_{u}+m_{s})}} \epsilon_{P}^{s\tau} \\ \epsilon_{L}^{s\tau/e} - 0.03 \epsilon_{R}^{s\tau} - \epsilon_{R}^{se} + 0.08(1) \epsilon_{T}^{s\tau} - 0.38 \epsilon_{P}^{s\tau} + 0.40(13) \hat{\epsilon}_{T}^{s\tau} \\ \end{array} \right) = \begin{pmatrix} 2.4 \pm 2.6 \\ 0.7 \pm 1.4 \\ 0.4 \pm 1.0 \\ -3.3 \pm 6.0 \\ -0.2 \pm 1.0 \\ -1.3 \pm 1.2 \\ \end{array} \right) \times 10^{-2} , \\ \left(\epsilon_{L}^{D\tau/e} \equiv \epsilon_{L}^{D\tau} - \epsilon_{R}^{De} \right) \\ & \left(\epsilon_{L}^{D\tau/e} \equiv \epsilon_{L}^{D\tau} - \epsilon_{L}^{De} \right) \\ \rho = \begin{pmatrix} 1 & 0.87 & -0.18 & -0.98 & -0.03 & -0.45 \\ 1 & -0.59 & -0.86 & 0.06 & -0.59 \\ 1 & 0.18 & -0.36 & 0.38 \\ 1 & 0.04 & 0.49 \\ 1 & 0.16 \\ 1 \\ \end{pmatrix} \\ \cdot & \left(\begin{array}{c} \rightarrow \text{ Percent level marginalized constrains.} \\ \rightarrow \text{ All Lorentz structures resolved in the } d\tau \text{ sector.} \\ \rightarrow \text{ Only two combinations of } \epsilon_{X}^{s\tau} \text{ are constrained.} \\ \end{array} \right) \\ & \left(\begin{array}{c} \epsilon_{L}^{0\tau/e} = \epsilon_{L}^{0\tau} - \epsilon_{L}^{0e} \\ \end{array} \right) \\ \text{We cannot resolve } \epsilon_{X}^{s\tau} \end{array} \right) \\ \end{array}$$

Other probes

Global fit

 $\chi^2_{SM} - \chi^2_{min} = 37.4 \Rightarrow 3\sigma$

$\hat{V}_{\mu s} \equiv V_{\mu s} (1 + \epsilon_{\mu}^{se} + \epsilon_{R}^{s})$		(0.22306(56) \		/
$\epsilon_l^{dse} \equiv \epsilon_l^{de} + \frac{\tilde{V}_{us}^2}{1 \tilde{V}_{us}^2} \epsilon_l^{se}$		2.2(8.6)		
$- \frac{1}{\epsilon_{D}^{d}}$		- 3.3(8.2)		
ϵ_{c}^{h}		3.0(9.9)		
ϵ_{P}^{de}		1.3(3.4)		
$\hat{\epsilon}_{T}^{de}$		-0.4(1.1)		
$\epsilon_l^{s\mu} - \epsilon_l^{se}$		0.8(2.2)		
ϵ_R^s		0.2(5.0)		
ϵ_P^{se}		-0.3(2.0)	× 10Å	
$\epsilon_L^{d\mu} - \epsilon_L^{de} - \epsilon_P^{d\mu} \frac{m_{\pi^{\pm}}^2}{m_\mu(m_\mu + m_d)}$	=	-0.5(1.8)	× 10	
$\epsilon_{S}^{s\mu}$		-2.6(4.4)		
$\epsilon_P^{\tilde{s}_{\mu}}$		-0.6(4.1)		
$\hat{\epsilon}_T^{s\mu}$		0.2(2.2)		
$\epsilon_L^{d au} - \epsilon_L^{de}$		0.1(1.9)		
$\epsilon^{d au}_{P_{\prime}}$		9.2(8.6)		
$\hat{\epsilon}^{a au}_T$		1.9(4.5)		
$\epsilon_L^{s au} - \epsilon_L^{se} - \epsilon_P^{s au} rac{m_{K^\pm}^2}{m_{ au}(m_u + m_s)}$		0.0(1.0)		
$\left\langle \epsilon_L^{s\tau} - \epsilon_L^{se} + 0.08(1)\epsilon_S^{s\tau} - 0.38\epsilon_P^{s\tau} + 0.40(13)\hat{\epsilon}_T^{s\tau} \right\rangle$		0.7(5.2)	1	

0 - 3 - 3 - 4 - 6 - 3 - 3 - 2 - 5 - 2 - 4 - 3 - 2 - 2 - 3 - 2 -1\ -2

Model independent bounds for the light quark sector involving all three lepton families.

Global fit

$$\chi^2_{SM} - \chi^2_{min} = 37.4 \Rightarrow 3\sigma$$

Why?

Global fit

One-at-a-tir	ne fit
--------------	--------

	ϵ_X^{de} × 10 ³	ϵ_X^{se} × 10 ³	$\epsilon_X^{d\mu} \times 10^3$	$\epsilon_X^{s\mu} \times 10^3$	$\epsilon_X^{d\tau}$ × 10 ³	$\epsilon_X^{s\tau}$ × 10 ³
L	-0.79(25)	-0.6(1.2)	0.40(87)	0.5(1.2)	5.0(2.5)	-18.2(6.2)
R	-0.62(25)	-5.2(1.7)	-0.62(25)	-5.2(1.7)	-0.62(25)	-5.2(1.7)
S	1.40(65)	-1.6(3.2)	х	-0.51(43)	-6(16)	-270(100)
P	0.00018(17)	-0.00044(36)	-0.015(32)	-0.032(64)	1.7(2.5)	10.4(5.5)
\hat{T}	0.29(82)	0.035(70)	х	2(18)	28(10)	-55(27)

In red: 3σ or more preference for BSM

 $\rightarrow \epsilon_{\rm R}^{\rm s}, \, \epsilon_{\rm L}^{\rm de}$ ease the tension between nuclear and kaon decays.

 $\rightarrow \epsilon_L^{s\tau}$ eases the tension between $\tau \rightarrow s$ inclusive and kaon decays.

What can we improve with better experimental data?

Concerning $\epsilon_X^{D\tau}$ s

Strange inclusive spectral functions \rightarrow resolving the $\epsilon_X^{s\tau}$ sector.

 $\tau \to \pi \pi \nu$ distribution \to resolving $\epsilon_L^{d\tau} - \epsilon_L^{de}$ and $\epsilon_T^{d\tau}$.

$$au o K \pi
u$$
 distribution o resolving $\epsilon_L^{s\tau} - \epsilon_L^{se}$, $\epsilon_T^{s\tau}$ and $\epsilon_S^{s\tau}$

Summary

Model independent bounds for the light quark sector involving all three lepton families. Guidance for model building and unbiased tool to test implications of BSM models in this set of transitions.

