

FASER experiment Control of the Cont

Umut KOSE On behalf of the FASER Collaboraton

The 17th International Workshop on Tau Lepton Physics TAU2023, 04-08 December 2023

Overview

- Description of the experiment <u>arXiv:2207.11427</u>
- Dark Photon Search in FASER
 <u>arXiv:2308.05587</u>
- Direct detection of LHC neutrinos with FASER electronic detector <u>arXiv:2303.14185</u>
- LHC neutrinos with FASERv emulsion detector <u>CERN-FASER-CONF-2023-002</u>
- Conclusions

ForwArd Search ExpeRiment (FASER) at the LHC

- FASER is a new forward LHC experiment :
 - Installed into the LHC complex
 - Designed to search for light and weakly interacting particles produced in p-p collisions at the ATLAS interaction point (IP)
 - Targets long-lived BSM particles (e.g. A', ALPs) and neutrinos
 - Exploiting large LHC collision rate + forward-peaked production
 - Located at 480 m downstream of ATLAS IP
 - LHC magnets and 100 m of rock shield most background
 - First data taking in July 2022 at the start of Run3

LHC as a dark photon factory

- At $\sqrt{s} = 13 TeV$ energy, the total inelastic proton-proton scattering cross section is measured by ATLAS and CMS: $\sigma_{inel}(13TeV) \approx 75 mb$, with most of it in the very forward direction.
- Considering 150 fb^{-1} , we expect 1.1×10^{16} inelastic pp scattering events, implying extraordinary meson production rates of

 $N_{\pi^0}\approx 2.3\times 10^{17}$, $N_\eta\approx 2.5\times 10^{16}$, $N_D\approx 1.1\times 10^{15}$ and $N_B\approx 7.1\times 10^{13}$

• FASER as forward detector placed on the beam collision axis downstream from IP, will be sensitive to new physics: such as dark photons produced in light meson decays.

arXiv:1708.09389 https://doi.org/10.1103/PhysRevD.99.095011

3

LHC as a source of neutrinos

- Huge flux of neutrinos at LHC produced at collision points in the far forward direction, from a variety of sources: pion, kaon, hyperon and charm decays.
 - Intense: ~10¹² neutrino in LHC Run-3
 - Highly collimated, beam size $\approx O(10cm)$
 - ~TeV neutrinos/antineutrinos in all flavours

Neutrinos passing through FASER ν during LHC Run 3 with integrated luminosity of 150 fb⁻¹

ETH zürich

FASER Detector

- Located at LHC service tunnel TI12 \bullet
- Small and inexpensive detector
 - 10 cm radius of active volume, 7 m long
- Successfully installed and \bullet commissioned in 2021

arXiv:2207.11427

Electromagnetic Calorimeter 4 LHCb Outer ECAL modules

Tracking Spectrometer stations 3x3 layers of ATLAS SCT strip modules

Scintillator veto system Two 350 x 300 x 20 mm³

FASERv emulsion detector

730 layers of 1.1 mm thich tungsten plates and emulsion films. [8 interaction length] Target mass of 1.1 tonne

FASER operation at Run3

- Successfully operated throughout 2022 and 2023
 - Continuous data taking
 - Largely automated
 - Up to 1.3 kHz
- Recorded ~97% of delivered luminosity
 - DAQ dead-time of 1.3%
 - A couple of DAQ crashes
- Emulsion detector exchange
 - Typically exchange during LHC Technical Stops
 - Needed to manage the occupancy ($O(10^6)$ tracks/cm²)
 - First box only partially filled

- Calorimeter gain optimised for:
 - Low E (<300 GeV) before 2nd exchange
 - High E (up to 3 TeV) after the exchange

Nearly 70 fb⁻¹ of data recorded with data taking efficiency of 97%

FASER Detector operation

- All detector components performing excellently
- More than 500M single-muon events recorded

Muon passing through full detector: energy deposition on scintillator and calorimeter consistent with minimum ionizing particle

[1] Dark photon search in FASER

- <u>Dark photons</u>: hypothetical gauge boson couple to dark matter and other hidden sector particles, can mix to the ordinary photons of SM.
- Mainly produced at the LHC through $\pi^0 \to A'\gamma$, $\eta \to A'\gamma$ and dark bremsstrahlung $pp \to ppA'$.

$$B(\pi^0 \to A'\gamma) = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 B(\pi^0 \to \gamma\gamma)$$

- Characterized by its mass, $m_{A'}$, and coupling parameter, ϵ .
- Long decay length (for $E_{A'} \gg m_{A'} \gg m_e$)

$$L = c\beta\tau\gamma \approx (80m) \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{TeV}\right] \left[\frac{100 MeV}{m_{A'}}\right]^2$$

- In the range of $2m_e < m_{A'} < 2m_{\mu} \simeq 211$ MeV, decays 100 % to $A' \rightarrow e^- e^+$
- For dark photons with TeV energies, FASER will be sensitive in parameter space with $m_{A'} \sim 100 \text{ MeV}$ and $\epsilon \sim 10^{-5}$.

Dataset collected at $\sqrt{s} = 13.6 TeV$ from September to November 2022 corresponding to integrated lumiosity of 27.0 fb⁻¹ used to search for dark photon in FASER.

The energy spectrum of dark photons in FASER produced with meson production modelled by different generators (EPOS-LHC, QGSJET II-04 and SIBYLL 2.3d).

8

Dark photon selection in FASER

• Based on simple and robust $A' \rightarrow e^-e^+$ selection criteria and optimized for early discovery

Event time is consistent with a colliding bunch at ATLAS IP

Exactly two good tracks in fiducial volume (p > 20 GeV and r < 95 mm, extrapolating to r < 95 mm at vetos) Total calorimeter energy E > 500 GeV

9

Background:

- Neutrino interactions at vicinity of timing detector
 - Estimated to be $(1.5 \pm 0.5(stat.) \pm 1.9(syst.)) \times 10^{-3}$ events (using 300 ab⁻¹ neutrino MC sample)
- Neutral hadrons produced in muon interaction in the rock, interacting or decaying the decay volume
 - Estimated from lower energy events with 2/3 tracks and different veto conditions $(8.4 \pm 11.9) \times 10^{-4}$ events
- Total backround $(2.3 \pm 2.3) \times 10^{-3}$ events

Dark photon results

- No events seen in unblinded signal region
- With null-result, FASER sets limits on previously unexplored parameter space
- At the 90% confidence level, FASER excludes the region of $\epsilon \sim 4 \times 10^{-6} 2 \times 10^{-4}$ and $m_{A'} \sim 10 \ MeV 80 \ MeV$ in the dark photon parameter space, as well as the region of $g_{B-L} \sim 3 \times 10^{-6} 4 \times 10^{-5}$ and $m_{A'_{B-L}} \sim 10 \ MeV 50 \ MeV$ in the B L gauge boson parameter space

THzürich

10

[2] LHC Neutrinos in FASER/FASER ν

- Dedicated emulsion subdetector to study unexplored energy regime (TeV neutrinos)
- Neutrino flux for all flavours maximized on the collision axis line of sight
- Study production, propagation and interactions of high energy neutrinos
- Primary goal of FASERv is the cross-section measurements of different flavor at TeV energies. FASER Collaboration, Eur. Phys. J. C 80 (2020) 61, arXiv:1908.02310
- Probing neutrino related models of new physics \bullet

Expected number of νCC interaction events occurring in FASER ν during LHC Run 3 with 250 fb⁻¹ integrated luminosity based on Phys. Rev. D 104, 113008

Gen	erators	$FASER\nu$		
light hadrons	heavy hadrons	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + ar{ u}_{\mu}$	$\nu_{\tau} + \bar{\nu}_{\tau}$
SIBYLL	SIBYLL	1501	7971	24.5
DPMJET	DPMJET	5761	11813	161
EPOSLHC	Pythia8 (Hard)	2521	9841	57
QGSJET	Pythia8 (Soft)	1616	8918	26.8
Combin	ation (all)	2850^{+2910}_{-1348}	9636^{+2176}_{-1663}	67.5^{+94}_{-43}
Combination	(w/o DPMJET)	1880^{+641}_{-378}	8910^{+930}_{-938}	$36^{+20.8}_{-11.5}$

Directly observed $v_{\tau}CC$ interactions (event-by-event): 9 at DONUT and 10 at OPERA experiments

11

U. KOSE, ETH-Zurich

[2.1] First Direct Observation of Collider Neutrinos with FASER at the LHC

- Just using spectrometer and veto systems, v_{μ} CC and \bar{v}_{μ} CC interactions can be detected
- Dataset collected at $\sqrt{s} = 13.6 TeV$ from July to November 2022 corresponding to integrated lumiosity of 35.4 fb⁻¹ used for the first direct observation of neutrino interactions using the active electronic components of FASER detector.

Phys. Rev. Lett. 131, 031801 (2023)

Neutrino Results

- Expecting 151 ± 41 neutrino events from ν_{μ} CC (and $\bar{\nu}_{\mu}$ CC) interactions using GENIE simulation
 - Uncertainty from difference between generators (DPMJET & SIBYLL).

Background:

- Neutral hadrons: 0.11 ± 0.06 events
- Muon scattering: 0.08 ± 1.83 events
- Veto inefficiency: negligible

• Unblinded results:

- 153 events in the signal region
- Signal significance of 16σ

THzürich

13

[2.2] Neutrino Results from FASER ν

- Since March 2022, five FASERv emulsion modules are exchanged during LHC technical stop
 - FASERv emulsion detector is passive and records signals from all traversing charged particles
 - To keep the detector occupancy at an acceptable level for analysis, $O(10^6)$ tracks/cm²
- Analysed dataset was collected by exposing to 9.5 fb⁻¹ pp collision data from July to November 2022 at $\sqrt{s} = 13.6 TeV$.
- 150 out of 730 emulson fims are analysed to search for LHC neutrino interaction vertices.
 - Corresponding to 68 kg of target mass
 - Selecting vertices with associated lepton candidate, e or μ , with $E_{lep} > 200 \text{ GeV}$

		Expected background		Expected signal	Observed
FASER		Hadron int.	ν NC int.	Expected signal	Observed
Preliminary	ν _e CC	0.002 ±0.002(stat)±0.002(syst)	-	1.2 ^{+4.0} -0.6	3
	ν_{μ} CC	0.32 ±0.15(stat)±0.16(syst)	0.19 <u>±</u> 0.15	4.4 ^{+4.2} _{-1.4}	4

Three $v_e CC$ and four $v_{\mu}CC$ candidates are observed, probability to be explained by background 1.6×10^{-7} (5.1 σ) and 5.2×10^{-3} (2.5 σ), respectively.

U. KOSE, ETH-Zurich

First direct observation of $v_e CC$ at the LHC

Forward Physics Facility (FPF)

- FPF is proposed new facility to fully exploit the LHC's physics potential in the forward direction during the High-Luminosity LHC era
 - BSM physics searches, neutrino physics, QCD and astro-particle physics
- New underground cavern and shaft, 600 m away from the ATLAS IP, 65 m long and 8.5 m wide
- High statistics highest energy neutrinos/antineutrinos:
 - *O*(10tonne) detectors with HL-LHC
 - $\mathcal{O}(10^5) \nu_e$, $\mathcal{O}(10^6) \nu_\mu$ and $\mathcal{O}(10^4) \nu_\tau$ interactions with energies from $\mathcal{O}(100)$ GeV to a few TeV

Scaled to the nominal HL-LHC luminosity of $5 \times 10^{34} \ cm^{-2} s^{-1}$

See talks from Jianming Bian, Yu-Dai Tsai

U. KOSE, ETH-Zurich

Conclusions

- FASER successfully took data in first year of Run 3 at the LHC
 - Running with fully functional detector and very good efficiency
- Excluded dark photon (A') in region of low mass and kinetic mixing
 - Probes new territory in interesting thermal-relic region
- Neutrino search in FASER/FASER ν
 - Opens new window for high-energy neutrino study
 - First direct observation of collider neutrinos
 - ~153 $\nu_{\mu}CC$ interactions in spectrometer
 - More searches and neutrino measurements at $\mathsf{FASER}\nu$
 - Observing for the first time the highest energy, 1.5 TeV, v_eCC interaction
 - Three $v_e CC$ and four $v_{\mu}CC$ candidates observed in subset of FASERv data
- Looking forward to up to 10x more LHC run-3 data
- More results are coming, stay tuned!

LHC Fill 8315, Event 47032829, 2022-10-27 08:52:45

Thank you!

ERI

European Research Council Established by the European Commission

b

BERN

FASER supported by

HEISING-SIMONS FOUNDATION

UNIVERSITÄT BONN

Swiss National

Science Foundation

IM NS

S

RVINE UNIVERSITY of WASHINGTON UNIVERSITY OF ROYAL HOLLOWAY UNIVERSITY OF SUSSEX

<u>Backup</u>

U. KOSE, ETH-Zurich

Axionlike particles at FASER: The LHC as a photon beam dump

- ALPs with photon-like couplings can be produced by high energy photons in the forward direction interacting with LHC material (the TAN absorber) via the Primakoff process. "LHC as a photon beam dump". The ALP can then decay to 2 photons in FASER: <u>Phys. Rev. D98 no. 5, (2018) 055021</u>
- ALPs with W-like couplings can be produced in b hadron decays, and decay to 2 photons in FASER
 - FASER sensitivity nicely fits between existing collider and fixed target

Dark Photon production

- Simulations greatly refined by LHC data
- Production is peaked at $p_T \sim \Lambda_{QCD} \sim 250 \text{ MeV}$
- Enormous event rates: N₂~10¹⁵ per bin

- Production is peaked at $p_T \sim \Lambda_{OCD} \sim 250 \text{ MeV}$
- Rates highly suppressed by ε² ~ 10⁻¹⁰
- But still N_{A'} ~ 10⁵ per bin •

- Only highly boosted ~TeV A's decay in FASER
- Rates again suppressed by decay requirement
- But still N_{A'} ~ 100 signal events, and almost all are within 20 cm of "on axis"

d [m]

10³

10

10-1

 10^{-2}

10-3

Expected sensitivity for dark photon

- FASER (150/fb) and FASER 2 (3/ab) benchmark sensitivities
- Production:
 - mainly through decays of light mesons,
 - $\pi^{o}, \eta \rightarrow \gamma A^{o}$
 - and through dark bremsstrahlung.
- Decays:
 - $e^+e^-, \ \mu^+\mu^-, \ \tau^+\tau^-$

Detector Performance: Timing and Calo

- Calorimeter resolution measured in test beam
 - Better than 1% at high energy
- Precision timing of both scintillator and calorimeter
 - Not used in current analyses

Detector Performance: Tracker Alignment

- Tracker aligned using iterative local χ^2 method
 - Validated using simulation with misalignment
- Currently only aligning two most sensitive parameters
 - Vertical shift and in-plane rotation
- Aligned residuals close to ideal geometry simulation

Dark Photon Backgrounds

• Main background is from neutrino interactions

- Primarily coming from vicinity of timing detector
- Estimated from GENIE simulation (300 ab⁻¹)
 - Uncertainties from neutrino flux & mismodelling
- Predicted events with E(calo) > 500 GeV

 $(1.5 \pm 0.5(stat.) \pm 1.9(syst.)) \times 10^{-3}$

Neutral hadrons (e.g. K_s) from upstream muons interacting in rock in front of FASER

- Heavily suppressed since:
 - Muon nearly always continues after interaction
 - Has to pass through 8 interaction length (FASERv)
 - Decay products have to leave E(calo) > 500 GeV
- Estimated from lower energy events with 2 or 3 tracks and different veto conditions

$(8.4 \pm 11.9) \times 10^{-4}$

Total background prediction

 $(2.3 \pm 2.3) \times 10^{-3}$

FASER ν workflow: From emulsion production to physics analysis

FASER ν neutrino interaction classification

- Event classification by topology and kinematics
- Neutrino energy measurement with ANN by combining topological and kinematical variables. Energy resolution of $\Delta E/E \sim 30\%$
- Muon identification by their track length in the detector ($8\lambda_{int}$)
- Muon charge identification by use of FASER spectrometer: distinguishing v_{μ} and \overline{v}_{μ}

- Track matching between trackers and the emulsion detector
 - Enable charge identification and v_{μ} , \bar{v}_{μ} classification and potentially v_{τ} , \bar{v}_{τ}

FASER MC simulation Event display of neutrino interaction

Detector Performance: Emulsion

• Excellent hit resolution (0.3 μm) after dedicated film alignment

- Muon momentum measured by multiple columb scattering
 - Resolution from simulation ~20% at p=200 GeV.
 - Validated by splitting long tracks in data.

Shower energy measurement in FASER ν

- Reconstruct EM shower in thin cone.
- Performed by counting number of segments within a cylinder along an electron candidate
 - shower maximum has the highest number of segments.
- Background segments are sizable
 - cylinder size limited to $r = 100 \mu m$, length = 8 cm
 - segment angle with respect to shower axis < 10 mrad
 - minimum distance to segment < 50 μm.
- Average background estimated by using random cylinders and subtracting from the shower before energy estimation.
- Resolution: from MC ~25% at p=200 GeV
- More work ongoing to improve the resolution of energy

Backgrounds: Neutrino search in FASER

- Neutral hadrons estimated from simulation
 - Expect ~300 neutral hadrons with E>100 GeV reaching FASERn, most accompanied by μ, but conservatively assume missed
 - Estimate fraction of these passing event selection, most are absorbed in tungsten with no highmomentum track 0.11 ± 0.06 events
- Scattered muons estimated from data
 - Take events w/o front veto radius requirement and single track segment in first tracker station with 90 < r < 95 mm, fit to extrapolate to higher momentum
 - Scale by number of events with front veto cut, use MC to extrapolate to signal region

0.08 ± 1.83 events

 Veto inefficiency estimated from final fit negligible

FASERV

Neutrino Backgrounds for neutrino interaction search in FASER

• Neutral hadrons estimated from 2-step simulation

- Expect ~300 neutral hadrons with E>100 GeV reaching FASERv
 - Most accompanied by μ but conservatively assume missed
- Estimate fraction of these passing event selection
 - Most are absorbed in tungsten with no high-momentum track
- Predict N = 0.11 ± 0.06 events

• Scattered muons estimated from data SB

- Take events w/o front veto radius requirement and single track segment in first tracker station with 90 < r < 95 mm
 - Fit to extrapolate to higher momentum
- Scale by # events with front veto cut
 - Use MC to extrapolate to signal region
- Predict N = 0.08 ± 1.83 events
 - Uncertainty from varying selection

- Fit events with 0 (SR) and also 1 (1st or 2nd) or 2 front veto layers firing
- Find negligible background due to very high veto efficiency

FASERv2: Emulsion (neutrinos)

FORMOSA: Scintillators (milicharged

AdvSND: electronic (neutrinos) Magnet Muon filter Magnetized Had Cal Vertex det EM Cal 0.5 m 0.5 m 5tn target Off-axis

~6.5 m

Tracking Stations

Physics Studies: BSM

