Dark sector searches with tau-pair events at Belle and Belle II

The 17th International Workshop on Tau Lepton Physics (TAU2023) | Louisville

5 December, 2023

Sourav Dey on behalf of the Belle and Belle II Collaboration

To Discuss:

• Search for a dark leptophilic scalar produced in association with $\tau^+\tau^-$ pair in e^+e^- annihilation at center-of-mass energies near 10.58 GeV(Arxiv 2207.07476)

• Search for Lepton Flavor Violating τ Decays to a Lepton and an Invisible Boson at Belle II(PRL 130, 181803 (2023). Arxiv 2212.03634)

• Search for a $\tau^+\tau^-$ Resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ Events with the Belle II Experiment(PhysRevLett.131.121802)

Not covered in this talk

The Apparatus

Analysis

Analysis

s) rrel)

The Apparatus

Description of Belle detector:

talk by Sourav Patra

Description of Belle II detector:

talk by Radek, talk by Paul

$$b\bar{b}) = 1.05 \ nb$$

• $\Upsilon(nS)\epsilon[n = 1,..,5]$, use of off resonance data : B factories are also τ factories

Analysis

Analysis

Search for a heavy neutral lepton that mixes predominantly with the τ neutrino (NEW) **RESULTS**, to be submitted to PRL)

• Search for a dark leptophilic scalar produced in association with $\tau^+\tau^-$ pair in e^+e^- annihilation at center-of-mass energies near 10.58 GeV(to be submitted to PRL. Arxiv link)

• Search for Lepton Flavor Violating τ Decays to a Lepton and an Invisible Boson at Belle II(PRL) 130, 181803 (2023). Arxiv <u>link</u>)

- Neutrino Oscillations: Neutrino has mass
- Neutrino masses can be incorporated to SM by introducing RH (Majorana) neutrinos
- Allows to solve some of the outstanding problems of the SM
 - Origin of the SM neutrino masses
 - Non-baryonic dark matter Phys. Lett. B 631, 151-156 (2005)
 - Baryogenesis
- N are sterile: Interacts with ν_{SM} through mixing: $N \leftrightarrow \nu_{SM}$
- Long lifetime of N: due to small m_N and small mixing
- Heavy Neutral Lepton also appears in SUSY, exotic Higgs, GUT...

T. Asaka, S. Blanchet, M. Shaposhnikov,

Heavy Neutral Lepton : Direct searches

$|V_{eN}|^2$, $|V_{\mu N}|^2$, $|V_{\tau N}|^2$ = mixing coefficients of ν_e, ν_μ, ν_τ with N

- Previous experiments explored m_N from 100 MeV to $\sim 1 \text{TeV}$
 - $m_N > m_Z$ Direct searches (a)LHC: $pp \to Nl^{\pm}$
 - $m_N < m_{Z,W}$ DELPHI($Z^0 \rightarrow \nu N$), ATLAS/ $\mathrm{CMS}(W^{\pm} \to Nl^{\pm})$
 - $m_N < m_{B,D,K}$ Belle, LHCb, beam-dump, NA62

arxiv 1502.06541

Heavy Neutral Lepton : Direct searches

 $|V_{eN}|^2$, $|V_{\mu N}|^2$, $|V_{\tau N}|^2$ = mixing coefficients of ν_e, ν_μ, ν_τ with N

- Previous experiments explored m_N from 100 MeV to ~ 1 TeV
 - $m_N > m_Z$ Direct searches @LHC: $pp \to Nl^{\pm}$
 - $m_N < m_{Z,W}$ DELPHI($Z^0 \rightarrow \nu N$), ATLAS/ CMS($W^{\pm} \rightarrow Nl^{\pm}$)
 - $m_N < m_{B,D,K}$ Belle, LHCb, beam-dump, NA62
- All the experiments provide tight limits on $|V_{eN}|^2$, $|V_{\mu N}|^2$

Heavy Neutral Lepton : Direct searches

 $|V_{eN}|^2$, $|V_{\mu N}|^2$, $|V_{\tau N}|^2$ = mixing coefficients of ν_e, ν_μ, ν_τ with N

- Previous experiments explored m_N from 100 MeV to ~ 1 TeV
 - $m_N > m_Z$ Direct searches @LHC: $pp \to Nl^{\pm}$
 - $m_N < m_{Z,W}$ DELPHI($Z^0 \rightarrow \nu N$), ATLAS/ CMS($W^{\pm} \rightarrow Nl^{\pm}$)
 - $m_N < m_{B,D,K}$ Belle, LHCb, beam-dump, NA62
- All the experiments provide tight limits on $|V_{eN}|^2$, $|V_{\mu N}|^2$
- Limits on $|V_{\tau N}|^2$ are much weaker
- This motivates us to overcome the experimental challenges and explore $|V_{\tau N}|^2$

- N decays via the weak neutral current
- This analysis probes $|V_{\tau N}|^2$ directly
- This production mechanism implies $m_N < m_\tau m_\pi$
- N is long-lived for a range of $|V_{\tau N}|^2$ values that we are sensitive to

Full Belle data sample used (836 \pm 12) \times 10⁶ τ pairs

•
$$e^+e^- \rightarrow \tau^+_{tag}\tau^-_{sig}$$

Tag side:
 $\tau^+_{tag} \rightarrow \qquad \pi^+\bar{\nu}_{\tau}$
 $\pi^+\pi^0\bar{\nu}_{\tau}$
Signal side:

$$\tau_{sig} \rightarrow \pi^- N(\rightarrow \mu^+ \mu^- \nu_{\tau})$$

- We look for a $\mu^+\mu^-$ displaced vertex (DV)
- Radial position of DV > 15 cm from the beam axis

DV = Displaced Vertex

IP = Interaction Point

*K*⁰ rejection and definition of two signal regions

- $K^0 \to \pi^+ \pi^-$: displaced vertex similar to N: removed the mass region
- We divide the signal region into Low mass and High mass signal region:
 - SRH: $m_{\pi\pi}^{DV} > 0.52 \ GeV/c^2$
 - SRL: $m_{\pi\pi}^{DV} < 0.42 \ GeV/c^2$
- Light N distribution is different from heavy N distribution

- Full kinematics of the signal-decay chain reconstructed with a two-fold ambiguity(m₊ and m_{_})
- In the signal regions targeting heavy and light Ns we observe 1 and 0 events, respectively,
 - in agreement with the background expectation.

only signal event observed

Results

- Uncertainties
 - N branching fraction luminosity \bullet
 - uncertainty on the reconstruction of the two \bullet prompt tracks
 - the background yield expectations(largest) \bullet
- Handled with the nuisance parameters using CL_{c} prescription
- Allows for direct measurement of the N mass if a signal is observed

• Search for a heavy neutral lepton that mixes predominantly with the τ neutrino (NEW) RESULTS, to be submitted to PRL)

- at center-of-mass energies near 10.58 GeV(Arxiv 2207.07476)
- 130, 181803 (2023). Arxiv <u>link</u>)

Search for a dark leptophilic scalar produced in association with $\tau^+\tau^-$ pair in e^+e^- annihilation

• Search for Lepton Flavor Violating τ Decays to a Lepton and an Invisible Boson at Belle II(PRL)

Dark Leptophilic Scalar

- Scalars other than Higges bosons appear in many BSM theories
- The mixing between this dark scalar ϕ_L and the SM Higgs boson gives rise to couplings proportional to SM fermion masses, described by
- Couples to both quarks and leptons, the existence of such particles is strongly constrained by the searches for rare flavor-changing neutral current decays of mesons, e.g. $B \rightarrow K\phi$ and $K \rightarrow \pi\phi$
 - However, these bounds are evaded if the coupling of the scalar to quarks is suppressed and this scalar interacts preferentially with leptons.
- Can explain
 - $(g-2)_{\mu}$ anomaly
 - Lepton flavor universality violation

- ξ = coupling constant independent of lepton flavor,
- m_{ℓ} = mass of lepton
- v = 246 GeV, is the vacuum expectation value of the Higgs field

• $e^+e^- \rightarrow \tau^+\tau^-\phi_L$, $\phi_L \rightarrow e^+e^-/\mu^+\mu^-$

• The scalar decays to a pair of leptons: search for narrow peak in lepton pair invariant mass distribution

•
$$\phi_L \rightarrow e^+ e^-$$
 for $m_{\phi_L} < 2m_{\mu}$

•
$$\phi_L \rightarrow \mu^+ \mu^-$$
 for $m_{\phi_L} > 2m_{\mu}$

- High production cross-section times branching ratio in the region 40 MeV $< m_{\phi_L} < 6.5$ GeV.
- Our search has sensitivity to place competitive limits on ξ till $m_{\phi_L} < 6.5$ GeV

626 fb^{-1} data from Belle detector

Results: data vs. Monte Carlo in Control Region

- Extraction of the signal:
 - fitting l^+l^- invariant mass distribution: simultaneous fit for both e^+e^- and $\mu^+\mu^-$ channel
 - evaluation at each mass point of ϕ_L
- Good agreement seen in data vs. Monte Carlo comparison in control regions: BDT < 0.5

Results: data vs. Monte Carlo in Signal Region

Signal region: No obvious narrow peak structure is observed \bullet

Results: upper limits on the signal cross-section

- 90% confidence level upper limits on the signal cross-section
- No significant excess in all masses

Results: level upper limits on the coupling constant

- 90% confidence level upper limits on the coupling constant
- No ϕ_L can explain observed excess in $(g-\bar{2})_{\mu}$ for $m_{\phi_L} < 4$ GeV

- Search for a heavy neutral lepton that mixes predominantly with the τ neutrino (NEW) RESULTS, to be submitted to PRL)
- at center-of-mass energies near 10.58 GeV(Arxiv 2207.07476)
- 130, 181803 (2023). Arxiv <u>2212.03634</u>)

• Search for a dark leptophilic scalar produced in association with $\tau^+\tau^-$ pair in e^+e^- annihilation

Search for Lepton Flavor Violating τ Decays to a Lepton and an Invisible Boson at Belle II(PRL)

Motivation

- in models with, e.g., axion-like particles (PhysRevLett.124.211803)
- Direct search in $\tau^- \to \ell^- \alpha \ (\ell = e/\mu)$
- Lepton Flavor Universality check
- 68, 25-28 (1995)).
- the range indicates their dependence on the α mass in the (0–1.6) GeV/ c^2 range)

$$\frac{\mathscr{B}(\tau^- \to e^- \alpha)}{\mathscr{B}(\tau \to e^- \bar{\nu_e} \nu_{\tau})} < (6 - 36) \times 10^{-3}$$
$$\frac{\mathscr{B}(\tau^- \to \mu^- \alpha)}{\mathscr{B}(\tau \to \mu^- \bar{\nu_{\mu}} \nu_{\tau})} < (3 - 34) \times 10^{-3}$$

• Light, beyond-the-standard-model bosons (α) that are not directly detectable (invisible) are predicted

This process was previously searched for by the MARK III and ARGUS collaborations (Z. Phys. C)

• The current best upper limits on the $\tau^- \rightarrow \ell^- \alpha$ branching fractions (at 95% confidence level where

- In center-of-mass frame: τ pairs: back to back
 - tag side: 3 charged particle from $\tau^- \rightarrow h^- h^+ h^- \nu_\tau (h = K, \pi)$
 - signal side: one charged particle
- $\tau \to \ell^- \bar{\nu_\ell} \nu_\tau$: irreducible background: however the magnitude of the lepton momentum depends only on the α mass : the difference thus exploited
 - τ pseudo rest frame: $\hat{p}_{\tau} \approx \frac{-\dot{p}_{3h}}{|\vec{p}_{3h}|}, E_{\tau} \approx E_{CMS}/2$
- pseudo rest frame

 $62.8 fb^{-1}$ data from Belle II detector: 57.7 Million τ pairs

• Measure
$$\frac{\mathscr{B}_{\ell\alpha}}{\mathscr{B}_{\ell\bar{\nu}\nu}} = \frac{\mathscr{B}(\tau^- \to \ell^- \alpha)}{\mathscr{B}(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau)}$$

 E^{*}_{ρ} • Search for a peak in normalized lepton energy $x_{\ell} \equiv \frac{-2\ell}{m_{\tau}c^2/2}$, $E_{\ell}^* = \text{energy of the charged lepton in } \tau$

Results: Spectra of X_{ℓ}

- Simulated spectra for standard-model processes: stacked, gray band: total uncertainty(dominated by the lepton-identification efficiency uncertainty)
- Remaining background processes combined together: collectively referred to as "other"
- The distributions for $\tau \to \ell^- \alpha$ are shown for three α masses assuming branching-fraction ratios of 5%

Results

- Fit with SM and SM+NP expectations, compare likelihood of the two models
- No statistically significant signal observed
- Upper limits on 95% CL

most stringent limits on invisible spin-o boson production from τ lepton decays to date

Summary

- No significant excess observed
- Stringent limits in all three analyses
- Search for a heavy neutral lepton that mixes predominantly with the τ neutrino
 - For the first time, utilizes the displaced vertex originating from the long-lived Heavy Neutral Lepton decay
 - Ability to reconstruct the Heavy Neutral Lepton candidate mass and suppress background to the single-event level
- Search for a dark leptophilic scalar produced in association with $\tau^+\tau^-$ pair in e^+e^- annihilation at centerof-mass energies near 10.58 GeV
 - No ϕ_L can explain observed excess in $(g-2)_{\mu}$ for $m_{\phi_I} < 4$ GeV
- Search for Lepton Flavor Violating τ Decays to a Lepton and an Invisible Boson at Belle II
 - most stringent limits on invisible spin-0 boson production from τ lepton decays to date

more data, hope for more exciting results in the future

Long shutdown now : for upgrades, will resume data taking in 2024 : improved detector, and

Search for a $\tau^+\tau^-$ Resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ Events with the Belle II Experiment (PhysRevLett.131.121802)

- First search for $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ in 3.6 10 GeV/c² range
- $62.8 fb^{-1}$ Belle II data
- Probes three different models
 - spin-1 particle coupling only to the heavier lepton families
 - a Higgs-like spin-0 particle that couples preferentially to charged leptons
 - an an axionlike particle

Search for a $\tau^+\tau^-$ Resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ Events with the Belle II Experiment (PhysRevLett.131.121802)

from Belle to The Belle II Detector

Luminosity

- Belle data taking period: $1999-2010: 1040 \text{ fb}^{-1}$
- Belle II: Regular data-taking since April 2019
- Current integrated luminosity 424 fb^{-1}
- long shutdown for accelerator and detector upgrades, will resume data taking in 2024
- Belle II Design integrated luminosity 50 ab^{-1}

• $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \ nb$

• $\Upsilon(nS)\epsilon[n = 1,...,5]$, use of off resonance data : B factories are also τ factories

- •40 times larger luminosity than previous generation KEKB
- •using nano-beam scheme with a tiny beam spot:
 - •60 nm x 10 μ m x few 100 μ m in y, x, z
- •a few hundred atomic layers in y

Signal, Control and Validation regions

- Signal region: Reconstruct as $\tau^- \to DV(\to \mu^+ \mu^+)$
- Validation region for Data-MC agreement:

• Reconstruct as $\tau^- \rightarrow DV($

- ο Reconstruct as $τ^-$ → DV(
- Reconstruct as $\tau^- \rightarrow DV($

o Control and validation regions are also divided as CRh, CRl and VRh, VRl (similar to signal region)

$$^{\pm})\pi^{-}$$

• Control region: Reconstruct as $\tau^- \to DV(\to \mu^+ \pi^\pm)\pi^-$ (used in the fit for data-driven background estimate)

$$\rightarrow \mu^{-}\mu^{-})\pi^{+}$$

 $\rightarrow \pi^{+}\pi^{-})\pi^{-}$ with $m_{\pi\pi} < 0.42$ GeV and $m_{\pi\pi} > 0.52$ GeV
 $\rightarrow \pi^{+}\pi^{-})\pi^{-}$ with $0.480 < m_{\pi\pi} < 0.515$ GeV

HNL mass reconstruction

- Despite the neutrino, we can reconstruct the decay chain kinematics completely, up to 2-fold ambiguity.
 - ▶ 12 unknowns: p_{ν}^{μ} , p_{N}^{μ} , p_{τ}^{μ}
 - ▶ 12 constraints:
 - p^{μ} conservation in the τ and N decays (8)
 - Known masses of τ and $\nu_{\tau}(2)$
 - Unit vector from the production point of the π system to that of the DV system, which is the direction of $\vec{p}_N(2)$

Quadratic equation

(Using the square root argument $A_{sq} = b^2 - 4ac$ for cut)

Two HNL mass solutions: m_+, m_-

The Belle Detector

• The accelerator collides electron and positrons

ECL CsI(Tl)

- $\sqrt{s} = 10.58 \text{ GeV}$: mass of $\Upsilon(4S)$
- $B\bar{B}, \tau^+\tau^-$ pair production with a boost of the center-of-mass system: asymmetric collider
- Prospect for studying a vast region of particle physics (Precision studies of B, charm, and tau physics, QCD and exotic hadrons, searches for BSM particles etc.)

8 GeV e^- , 3.5 GeV e^+

from Belle to The Belle II Detector

7 GeV e^- , 4 GeV e^+

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure Csl + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

KL and muon detector: Resistive Plate Counter (barrel)

Particle Identification

Luminosity

- $N_{signal} = N_{\tau\tau} \times B(\tau \to \pi N) \times B(N \to \mu^+ \mu^- \nu_{\tau}) \times \epsilon$, where ϵ is the efficiency
- Signal efficiencies in SRH and SRL as a function of $|V_{N\tau}|^2$ and m_N : efficiency map
- largest relative systematic uncertainty: the background yield expectations
- Other uncertainties
 - N branching fraction
 - decay modeling
 - luminosity
 - cross section the uncertainty on the reconstruction of the two prompt tracks
- All systematic uncertainties are handled with the nuisance parameters using CL_s prescription

 10^{-4}

- Requirement of 4 track events with net charge 0
- At least two tracks are identified as $e/\mu \rightarrow$ Same vertex
- Two known backgrounds
 - also $q\bar{q}, l^+l^-, l^+l^-l^+l^-, l^+l^-h^+h^-$ backgrounds
- backgrounds are suppressed using BDTs

