Neutrino & **Dark Matter Connections**

Kevin J. Kelly, Texas A&M University **TAU2023 — 4-8 December, 2023** kikelly@tamu.edu

Precision understanding of Lepton Mixing, CP Violation, etc.

New Physics in Neutrino Oscillations

Connections to Dark Sector Physics

Precision understanding of Lepton Mixing, CP Violation, etc.

New Physics in Neutrino Oscillations (A. Aurisano's talk after this!)

Connections to Dark Sector Physics

Tau Neutrinos for Three-Flavor **Oscillation Physics**

 $L = 1300 \text{ km (DUNE)} \\ 0.5 < \sin^2 (2\theta_{\mu\tau}) < 1$ $P_{\mu\tau} \propto \sin^2 \left(2\theta_{\mu\tau} \right) \sin^2 \left(\frac{\Delta m^2 L}{4E} \right)$ 8 10 $E_{\nu} \, [\mathrm{GeV}]$

DUNE & Tau-Neutrino Appearance

de Gouvêa, Kelly, Pasquini, Stenico [1904.07265]

Why Stress-test?

Tour de force results on quark mixing from the CKMfitter group

Closure tests allow for honest evaluation of our models — is the "three massive neutrinos" paradigm good or not?

Tau Neutrinos and Dark Sectors

1) Charged and Neutral Mesons are produced in the high-energy/highintensity proton collisions.

1) Charged and Neutral Mesons are produced in the high-energy/highintensity proton collisions. 2) Mesons undergo rare decays into dark sector mediators that are long-lived. Some fraction of them travel in the forward direction.

1) Charged and Neutral Mesons are produced in the high-energy/highintensity proton collisions. 2) Mesons undergo rare decays into dark sector mediators that are long-lived. Some fraction of them travel in the forward direction.

3) Dark Sector particles decay/interact inside the neutrino detector, leaving a striking signature.

1) Charged and Neutral Mesons are produced in the high-energy/highintensity proton collisions.

2) Mesons undergo rare decays into dark sector mediators that are long-lived. Some fraction of them travel in the forward direction.

3) Dark Sector particles decay/interact inside the neutrino detector, leaving a striking signature.

Tabletop ton-scale liquid-argon detector at Fermilab that took data in the NuMI beamline (120 GeV protons) HNL production possible through D-meson production: $D^{\pm} \rightarrow \tau^{\pm}, \tau^{\pm} \rightarrow N$

Full Disclosure...

Complementarity of Neutrino Detectors

Liquid Detectors (SBND, ICARUS, etc.)

Large mass for rare-particle scattering

Excellent particle ID, energy resolution, etc.

Gaseous Detectors (DUNE NDGAr)

Decay Signal \propto Volume

Neutrino Scattering Backgrounds \propto Mass

Complementarity of Neutrino Detectors

Liquid Detectors (SBND, ICARUS, etc.)

Large mass for rare-particle scattering

Excellent particle ID, energy resolution, etc.

Gaseous Detectors (DUNE NDGAr)

Decay Signal \propto Volume

Neutrino Scattering Backgrounds \propto Mass

Looking Ahead...

What do we do with a discovery?

Lepton-<u>Number-Violation in a (Heavy) Neutrino Beam</u>

Is the new particle a Dirac or Majorana Fermion?

Do the new particle's interactions preserve or violate Lepton Number conservation?

•Do these two chains occur with equal probability?

Heavy Neutrino Decay

Next-Generation Prospects

Berryman, de Gouvêa, Fox, Kayser, KJK, Raaf [1912.07622]

What if we're not lucky?

• What if the HNL is lighter than the pion? Then there are no fully-visible final states to decay into, and Lepton Number can't be identified on an event-by-event basis.

Still, there are differences between Dirac/Majorana fermions: Measure the distribution of outgoing (visible) particles

Dirac vs. Majorana in Three-Body Decays

de Gouvêa, Fox, Kayser, KJK [2104.05719] (Building off Balantekin, de Gouvêa, Kayser [1808.10518])

If N is a Majorana fermion, its decays are forward/backward symmetric if either

- The final-state charged leptons are identical (e.g. electron/positron pair).
- Whatever detection mechanism being used is charge-blind (can't distinguish electron from positron or muon from antimuon)

$$\mathcal{M}_1 = G_{NL} \left[\overline{u}_{\nu} \Gamma_N P_S u_N \right] \left[\overline{u}_{\alpha} \Gamma_L \right]$$

 $u_{ au}$