

By Sophie Charlotte Middleton

(smidd@caltech.edu)

on behalf of the BABAR Collaboration

December 2023

Motivations

Heavy Neutral Leptons (HNLs) are additional neutrino states. They have mass but are neutral in all respects.

- HNLs are proposed by several beyond Standard Model (BSM) theories to explain three major observational phenomena:
 - Neutrino oscillations and origins of their mass via seesaw models etc. (Phys. Rev. D 23,165);
 - Baryonic asymmetry of Universe (Phys. Rev. Lett. 81, 1359);
 - Dark matter candidate (Phys. Lett. B 631, 151–156).
- v-MSM proposes three keV-GeV scale HNLs.
- Experiments generally quote results in parameter space of elements $|U_{ln}|^2$.v. HNL mass hypothesis.
- Tau sector historically less explored...

Caltech

 $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \dots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \dots \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \dots \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} & \dots \end{pmatrix}$ $rac{
u_2}{
u_3}$

 \rightarrow N_{TT} \sim 4 × 10⁸ events

The BABAR Experiment

- For overview of experiment: Nucl. Instrum. Meth. A 729, 615 (2013).
- Asymmetric e^+e^- collider with $\sqrt{s} = 10.58 \text{ GeV}/c^2$ i.e. $\Upsilon(4S)$ resonance: 9 GeV electrons collide with 3 GeV positrons.
- Total luminosity: 432 fb⁻¹ (4.7 x 10⁸ $\overline{B}B$) on peak.

Detectors:

- **Reconstruct tracks:** Silicon Vertex Tracker (SVT) + 40-layer Drift Chamber (DCH), in 1.5-T solenoid.
 - Momentum resolution = 0.47% at 1 GeV/c
- Measure energy: Electromagnetic Calorimeter (EMC)
 - Energy resolution = 3% at 1 GeV.

PID:

- Identify charged pions, kaons and electrons using Ring Imaging Cherenkov detector (DIRC) + ionization loss measurements in the SVT and DCH.
- Instrumented flux return of solenoid used to identify muons.

The BABAR Search

 $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.919 \pm 0.003 \text{ nb}$ Integrated luminosity in runs used = 424 fb⁻¹ $\rightarrow N_{\tau\tau} \sim 4 \times 10^8 \text{ events}$

- BABAR 2022 analysis used the kinematics of hadronic tau decays based on previous technique (*Phys.Rev.D* 91 (2015) 5, 053006 Kobach and Dobbs).
- Looks only at kinematics, no assumptions on underlying model, except that there
 must be some small mixing with tau sector:
 - "signal side" : three pronged pionic tau decay $(\tau^- \rightarrow \pi^- \pi^- \pi^+ v_{\tau})$ as it allows access to region $100 < m_4 < 1360 \text{ MeV/c}^2$ where limits were loose.

• "tag side" : Second tau decay must be leptonic, due to cleaner environment.

Caltech

Branching Fractions: 1-prong (electron or muon) ~ 34 % 3-prong (3 pion) ~ 9%

Method

Templates for each mass in the form of 2D plots of E_h.v. m_h. Boundary of curved region in this plot characteristic of a massive neutrino.

- Model 3-pronged decay as 2-body with outgoing HNL and hadronic system (h).
- Define E_h as reconstructed energy and m_h as the invariant mass of the visible, hadronic products.
- $E_{\tau} = \frac{E_{cms}}{2}$ in the limit of no ISR. The value of E_h and m_h can exist, in principle, in the ranges:

 $m_4 = 100 \, MeV/c^2$

BABAR-MC

0.2

0.0

0.4

0.8

10000

Energy Fraction ⁸⁰ ⁸⁰ ⁸⁰ ⁸⁰ ⁸⁰

$$3m_{\pi\pm} < m_h < m_{\tau} - \sqrt{m_4^2 + q_+^2} < E_h < E_{\tau} - \sqrt{m_4^2 + q_-^2},$$
where
$$g_{\pm} = \frac{m_{\tau}}{2} \left(\frac{m_h^2 - m_{\tau}^2 - m_4^2}{m_{\tau}^2}\right) \sqrt{\frac{E_{\tau}^2}{m_{\tau}^2} - 1} \pm \frac{E_{\tau}}{2} \sqrt{\left(1 - \frac{(m_h + m_4)^2}{m_{\tau}^2}\right)\left(1 - \frac{(m_h - m_4)^2}{m_{\tau}^2}\right)};$$

$$Isignal samples made in modified TAUOLA, and passed through G4 + BABAR reco. alg.$$
Heavy Neutral Leptons at BABAR - Sophie Middleton - smidd@caltech.edu
$$m_{A} = 1000 MeV/c^2$$

Background and Signal Simulations

Use MC to estimate expected background contributions

 TAUOLA: Comp. Phys. Co. 130, 260–325 (2000)

 KK2F: Comp. Phys. Co. 64, 275 (1991)

 EvtGen: Nucl. Instrum. Meth. A 462, 152 (2001)

 JetSet: Comp. Phys. Co. 39, 347 (1986)

- Detector response modelled using GEANT4, event generator specific to each source
- Three potential sources of non-signal events in data:
 - **1.** SM 3 prong decay to 3 charged pions $(\tau^- \rightarrow \pi^- \pi^- \pi^+ v_{\tau})$
 - 2. Other SM tau decays accidentally tagged as (1)
 - 3. SM non-tau backgrounds:
 - $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^+B^-$ and $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^0\bar{B}^0$
 - $e^+e^- \rightarrow \bar{u}u, \bar{d}d, \bar{s}s$ and $e^+e^- \rightarrow \bar{c}c$
 - $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$

 HNL: characterized by large missing mass (TAUOLA+KK2F – custom function, mass modified to attribute masses in range 100 – 1300 MeV/c²)

Caltech

Fit Model

where:

Caltech

Assume each bin (i, j) in 2D plots can be represented by a Poisson sampling function:

$$\mathcal{L} = \prod_{ij} f(n_{ij}; n_{obs}, \vec{\theta}) = \prod_{ij} \underbrace{\nu_{HNL} + \nu_{\tau-SM} + \nu_{BKG}}_{(n_{obs})ij} \underbrace{(\nu_{HNL} + \nu_{BKG} + \nu_{\tau-SM})_{ij}}_{(n_{obs})ij!} \underbrace{(\mu_{ij}; n_{obs}, \vec{\theta})}_{(n_{obs})ij!} \underbrace{(\mu_{ij}; n_{obs}, \vec{\theta})}_{(n_{obs})ij!} \underbrace{(\mu_{ij}; n_{obs}, \vec{\theta})}_{(n_{obs})ij!} \underbrace{(\mu_{ij}; n_{obs})_{ij}}_{(n_{obs})ij!} \underbrace{(\mu_{ij}; n_{obs})_{ij}} \underbrace{(\mu_{ij}; n_{obs})_{ij}}_{(n_{obs})ij!} \underbrace{(\mu_{ij}; n_{obs})_{i$$

Use Wilk's theorem to f

Expected tau SM

Heavy Neutral Leptons at BABAR - Sophie Middleton - smidd@caltech.edu

the MLE of $IU_{t4}I^2$ a vector of nuisance

parameters which maximize the likelihood.

Event Selection

Caltech

• Selection optimized $\tau^{\pm} \rightarrow l^{\pm}v_l$ (tag) and $\tau^{\mp} \rightarrow \pi^{\mp}\pi^{\mp}\pi^{\pm}v_{4?}$ (3h)

Cut		Purpose
	Number of tracks	Ensure 1+3 prong topology
	Total charge on all 4 charged tracks is 0	Charge conservation
	$p_{CM}^{miss} > 0.9\% \sqrt{s}$	Suppresses non-tau backgrounds
	All tracks: $p_{trans} > 250 \text{MeV/c}$	To reach DIRC
	All tracks: $-0.76 < \cos(\theta) < 0.9$	Acceptance of DIRC
	1 prong: $\frac{2p}{E} < 0.9\%$	Consistent with tau decay
	PID Requirements	Uses Electron and Muon ID algorithms

Heavy Neutral Leptons at BABAR – Sophie Middleton – smidd@caltech.edu

Normalization Uncertainties	Uncertainty	Contribution
	Luminosity	0.44 % [BABAR]
	Cross-section	0.31% [Data]
	Branching fraction of 1-prong tau decays	Electron : 0.23 % [PDG] Muon: 0.23% [PDG]
	Branching fraction of 3–prong tau decays	3 pions : 0.57 % [PDG]
ormalization uncertainties affect all bins uniformly. ave small effect on overall yield.	PID Efficiency	Electron : 2 % [<i>BABAR</i>] Muons : 1 % Pions : 3 %
	q ar q and Bhabha Contamination	0.3 % [Control region analysis]
 They will be characterized as Gaussian nuisance parameters in the likelihood. 	Bin Size	< 1% [Alter bins, check results]
	Tracking Efficiency	N/A
	Detector Modelling	N/A
	Tau Mass uncertainty	N/A
	Tau Energy	N/A

Caltech

Systematic Shape Uncertainties

- $\tau^- \rightarrow \pi^- \pi^- \pi^+ v_{\tau}$ is mediated by the a₁ resonance 97% of the time.
- Dominant shape systematic in signal and tau backgrounds are from modelling of the hadronic tau decays in TAUOLA.
- Experimental (PDG) uncertainties large:
 - $m_{a_1} = 1230 \pm 40 \text{ MeV/c}^2$
 - $\Gamma_{a_1} = 420 \pm 35 \text{ MeV/c}^2$ (we use PDG estimates $250 600 \text{ MeV/c}^2$)
- To account for this looked at templates with mass and width varied to these extremes and re-calculated the likelihood
- Γ_{a_1} error has largest effect:
 - Shift in RMS of $\,\sim 6$ 7% in m_h and \sim 1 3% in E_h .
 - Shift in mean values for E_h and m_h shift by only ~ 1 – 2%.

10

Binned likelihood fit incorporating nuisance parameters.

3.12 x 10⁻⁴

4.70 x 10⁻⁵

8.34 x 10⁻⁵

4.49 x 10⁻⁵

4.70 x 10⁻⁶

3.85 x 10⁻⁵

At 95 % C.L

Caltech

800

900

1000

1100

1200

1300

3.58 x 10⁻⁴

5.28 x 10⁻⁵

9.11 x 10⁻⁵

4.78 x 10⁻⁵

5.04 x 10⁻⁶

4.09 x 10⁻⁵

- Dominant systematic from modelling uncertainties in hadronic tau decays.
- Presents new upper limits on $|U_{\tau4}|^2$ at 95 % C.L. between 100 MeV/c² 1300 MeV/c² :
 - World-leading constraints at time of acceptance for publication.
- In 2021-2023 there have also been new results in this region from:
 - ArgoNEUT: Phys. Rev. Lett., 127, 121801 (shown)
 - Boiarska et al.: Phys. Rev. D 104, 095019 (indirect use of CHARM electron and muon result)
 - Barouki et al. : SciPost Phys., 13:118, 2022. (BEBC reanalysis)

- Heavy Neutral Leptons offer ways of explaining several observational phenomena.
- The possible masses of the additional neutrino state is model dependent and can range from eV/c² up to very heavy masses.
- In the last few years, several new results have been published including results from collider-based experiments and neutrino experiments.
- Constraints in tau sector now comparable to those in the electron and muon sector.
- Many of these results are not from new experiments, they are in fact new studies using old data.
- This talk has given details on the latest analysis from **BABAR** which presents new upper limits on $|U_{\tau4}|^2$ at 95 % C.L. between 100 MeV/c² 1300 MeV/c² in the range $10^{-6} < |U_{\tau4}|^2 < 10^{-2}$.

Example Signal Simulations

largest sensitivity for large masses

0 (

0.0

0.2

 $m_4 = 500 \, MeV/c^2$

BABAR

1.0

0.8

0.2

0.4

Mass Fraction

0.6

0.0

0.0

- Plots illustrate in 1D projections and final 2D templates for $\tau^- \rightarrow \pi^- \pi^- \pi^+ v_X$
- Phase space changes with HNL mass

Caltech

Heavy Neutral Leptons at BABAR – Sophie Middleton – smidd@caltech.edu

0.4

0.6

Mass Fraction

BABAR

1.0

0.8

