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CONTEXT: CURRENT FORMS OF THE LATTICE-DISPERSIVE HVP DISCREPANCY

SM expectations for a, with dispersive vs lattice HVP
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CONTEXT: RBC/UKQCD intermediate window (W1) quantities (x 1019)

* The full intermediate window af}’l e |IL, |qc intermediate window a:’:,l’lqc
H. Wittig, EW Moriond 2306.04165 GB, DB, MG, AK, KM, SP [PRLxxx [2306.16808] and below]
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NOTATION, CONVENTIONS, FLAVOR DECOMPOSITIONS
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NOTATION and CONVENTIONS: a{{'”’ DISPERSIVE REPRESENTATION
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NOTATION and CONVENTIONS: a, LATTICE REPRESENTATION

C(t)—ngdg GEM @I O) = 5 [ ds VeV pp(s) (¢ > 0)

1 f & (451:13?@!2}_52) ci

Leading order contribution to aEVP
- K(s) 345 [
HVP S 3+/8 3
a, = 2/; dtw(t)C(t) = = 4&2?’:1.&_ ; dtw(t)e Vst

Light flavor lattice contributions
" jsospin limit (IL) light-quark (u, d) connected (lgc): 1I=0 and 1
" |L strange-quark connected (sconn) and uds disconnected (disc): 1=0 only
" EM (connected and disconnected): all of I1=0, I=1 and MI
= strong isospin-breaking (SIB) (connected and disconnected): to O(mg -m_): Ml only



ISOSPIN LIMIT RELATIONS
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with similar representations for re-weighted (windowed) IL, lqc and sconn+disc integrals



LATTICE-MOTIVATED INTERMEDIATE WINDOW QUANTITIES

Reduce lattice errors by cutting out short- and long-t contributions

RBC/UKQCD style intermediate-window reweighting:
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“WINDOWS” EMPHASIZING DIFFERENT REGIONS IN s

 Examples of motivation for focusing on specific regions in s:
» BaBar/KLOE/CMD-3 nuit data discrepancies in dominant p peak region
» EM/1+CVC discrepancies for 4m contributions at higher s

e Key question: can this be done without blowing up errors on the corresponding
lattice quantities? Answer: Yes: exponential-weight sum rules

» Appropriately chosen/tuned linear combinations of exponentials in Euclidean t
» Tuning to focus of desired region of s
» {t.} chosen to avoid large Euclidean t and control lattice errors



EXPONENTIAL WEIGHT SUM RULES (EWSRs)

For wo(E) =% =,E% "™ ()= deEﬁg-ﬂp{Eﬂy: t>0

E
J=1 th Hansen, Lupo, Tantalo 2019
Exponential-weiqght sum rules Hashimoto, Ishikawa 2020
OO n
= dEwy(E)p(E) =) z;C(t;)
Ein 7j=1
R(s) data lattice

Basic analysis strategy /soito, Golterman, kKM, Peris, 2022]

e Pick a physically interesting w(s)=2E W(E) (the “mold”)

* Build an approximation, w, (E; {x;}, {t}) (the “cast”) using a small number of
externally chosen {t;} and appropriately adjusted {x;}

* Choose {t;} to keep all C(t;) errors small (avoiding large t by construction)

 Provided the localization-in-s of the “cast” is similar to that of the “mold”,
throw away the mold and work instead with the exact cast sum rule



“IMPROVED” VS “UNIMPROVED” EWSR CASTS

24fsW(s)
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e “Unimproved” casts from strict HLT implementation; “improved” from reduced
fit condition number construction

e “Improved” casts (slightly) less similar to the “molds”

e However, still rather close to those “molds”; hence provide essentially the same
localization-in-s as the original “molds” or unimproved “casts”



RESULTS OF THE IMPROVED EWSR “CAST” CONSTRUCTION

exponential
i

R{s) data rational weiqhk If’I”rf weiqhk

R-ratio rel. error || lattice rel. error || lattice rel. error
Wis || 0.4756(16) 0.3% 0.468(26) 5.6% 0.496(17) 3.4%
Was || 0.08912(34) 0.4% 0.0838(33) 3.9% 0.0798(18) 2.3%

Lattice errors: ABGP22 IL, Igc only

improved exponential weights avoid comparing central values
lattice rel. error
Wis | 0.4669(68) 1.5%
Was | 0.0824(10) 1.2%

* Significant reduction in lattice errors (though still ~3-5 larger than dispersive)

* Further improvement possible (e.g., through modified {t;} set/range choices) but
best explored in conjunction with detailed error studies with new lattice data

* Further reduction in lattice errors also expected c.f. ABGP22



PART Il: IL, lqc AND sconn+disc RESULTS

* Data input for the dispersive side of IL, Iqc and sconn+disc sum rules
» Need s-dependent exclusive-mode input: here, from KNT19 (to E.,,=1.937 GeV)
» G-parity |=0, 1 separation for G-parity eigenstate exclusive modes

> External input for dominant G-parity-ambiguous modes (I=1 KK from
T—>KKv_ +CVC, Dalitz plot 1=0/1 separation for KK, p, w, @ EM
decay constants and m’y, ny widths for m®y, ny I=0/1/MI separation)

» Maximally conservative anti-correlated 50+50% split if no external input

» pQCD(+DVs) for inclusive contributions (E.,,>1.937 GeV)

» Small inclusive 1=0, 1 EM IB corrections from lattice

» Data-based corrections for Ml EM+SIB contamination of nominally 1=0, 1 sums
< dominant p-w region 2m, 3m: (dispersive)
s other nominally I=0, 1 modes: O(1%) additional uncertainty estimate

* Here: new IL, Iqc and sconn+disc results, including windows



ANATOMY OF THE DATA-BASED DETERMINATION OF a

* With KNT19 input:
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e Some tension with lattice (BMW)

lgc,IL
a q =

lqc,

HVP,lqc_alqc,IL
2 TR

( 5)(543.2(2.1) + 3.2(1.0) + 28.27(2) +0.26(12)) + 0.93(59) - 4.21(47)

G-par + G-parambig pQCD

95% 0.56%

IL
X 1010 results:

= 635.2(2.7)
= 638.3(4.1)

(KNT)
(DHMZ)

DVs

5.0%

light-quark connected

EM IB Ml IB
0.15% -0.66%

Colangelo, Hoferichter,
Kubis, Stoffer 2022 (CHKS22)

(88% of this result comes from pi+pi

BMW17
RBC/UKQCD18
ETMC18/19
PACS19

FHM19

Mainz19
ABGP19
BMW20

LM20

ABGP22

Data-based (KNT19)
Data-based (DHMZ)




RBC/UKQCD INTERMEDIATE WINDOW IL,Iqc RESULTS

G=+ mode X a;x x 101
low-s ¥t w™ 0.02(00)
ate™ 144.13{49)
D ¥ Doy~ 9.29(13)
at w2zl 11.94[48)
3x¥ 37~ (oo w) 0.14(01)
2x ¥ 27~ 2x" (no n) 0.83(11)
atax"dx" (oo n) 0.13(13)
mte” 0.85(03)
W2xt I 0.05(01)
ot r~ 2x” 0.07(i01)
wl— =yl 0.53(01)
w(— npp)dx 0.10(02Z)
w 0.15(03)
TOTAL 188.24{72)

azll’lqc contributions (in units of 1019)
» G=+: 186.93(80)
> KK: 0.58(7)
> KK 0.52(9)
> KK 0.60(60)
> mhy+ny 0.14(1)
» other mixed G: 0.05(5)
» pQCD+DVs: 10.9040.17
» EM corr’n: -0.04(6)
» 2w (xother) MI corr'n: -0.96(7)%0.29

[CHKS22 21t MI corr'n: JHEP 10 (2022) 032]

ay ¢ = 198.9(1.1) x 100

G. Benton, DB, MG, AK, KM, SP [PRLxxx, 2306.16808]



RBC/UKQCD INTERMEDIATE WINDOW DISPERSIVE IL, Iqc c.f. LATTICE

— F—

—. LM 20
—— yQCD 23
= | ABGP 22

— Mainz/CLS 22

—a— ETMC 22

—a— Fermilabh/HPOQCD/MILC 23
- RBC/URQCD 231

s Data-based BEGEKMP 23
195 200 260 210

ﬂ.f’h': » 1010

e Very significant tension between dispersive and lattice W1 IL, Iqc results



IL, lqgc DISPERSIVE vs LATTICE RESULTS FOR OTHER INTERMEDIATE WINDOWS

e Lattice EM results not available so neglect EM 1=0, 1 corrections for now
(plausible based on RBC/UKQCD intermediate window result)

 ForlL, Igc case, windowed versions of CHKS22 21t Ml correction (provided
by M. Hoferichter and P. Stoffer: thanks!)

* For sconn+disc case, windowed p-w region 3t Ml correction of Hoferichter,
Hoid, Kubis, Schuh (JHEP 08 (2023) 208) (HHKS23)

e Compare IL, lqc dispersive and ABGP22-based lattice results



ABGP22 INTERMEDIATE WINDOW (W2) RESULTS

e RBC/UKQCD-style intermediate window, designed to be longer distance, more
amenable to possible use of ChPT

lattice resulis

Light-quark connected from KNT19 R(s) data

ay, ' =102.1(2.4) x 1077

ay #19¢ = 93.75(36) x 10710

a;’ > =100.7(3.2) x 1071

 Once more, dispersive-lattice tension, but reduction in lattice errors needed to
sharpen the dispersive-lattice comparison



IMPROVED EWSR WEIGHT (W, W) IL, Iqc RESULTS

lgc__ ® IL1

o« Iy'= [, dsW(s) pg " (s)
Dispersive

[219¢ = 42.80(16) x 107

W15

719€ = 78.99(45) x 103

Benton, Boito, Golterman, Keshavarzi,
Maltman, Peris, 2311.09523

ABGP Lattice

S 21 = 46.69(68) x 102
5.60 15

IL\lgc _ 3
— 719€ = 82.4(1.0) x 10
3.10 25

systematic errors on lattice
results still to be assessed

* Another sign of tension between dispersive and lattice IL, Igc results
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POTENTIAL IMPACT OF THE NEW CMD-3 rtit DATA

* Interim conclusion: current published cross sections lead to
» good lattice/data-driven agreement for sconn+disc quantities
» significant disagreement (data-driven<lattice) for Igc quantities
» = lattice vs. data-driven discrepancy essentially all from Iqgc contribution

 However, new CMD-3 study [2302.8834 [hep-ex]] finds p peak region it cross
sections significantly higher than CMD-2, BaBar, KLOE, BESIII, SND

» Still undergoing scrutiny, but no obvious problems to date

» Replacing Tt HVP in CMD-3 region with CMD-3 only reduces SM-expt’l a,,
discrepancy to 0.9 o [CMD-3 2309.12910 [hep-ex] and many others]

» What about the impact on the KNT19-based Iqc discrepancies above?
CAUTION: PRELIMINARY EXPLORATION ONLY

i.e., NOT a new KNT-style 2023 2t combination



A. Keshavarzi Lattice 2023: Impact on az/l’lq and aHVP

MANCHESTER

Im pact of CMD-3 CMD-3 [F. Ignatov et al, arXiv:2302.08834]

DISCLAIMER: these are NOT new updates or combinations including the BNLA-2 —
CMD-3 data — simply demonstrations of the impact of the CMD-3 data alone. 9 ) ®

The Uriversizy of Manchester

FNAL ¢4-2 [Run-1} + &
In collaboration with Genessa Benton, Diogo Boito, Maarten
Golterman, Kim Maltman & Santi Peris [arXiv:2306.16608]. a70 >

E/‘\.

T T T BMw o SM
—— LM 20 EE!HW""‘“‘ BMWc thm HVP Em:i'ﬂa
= xQCcD23 < 210 >< 150 >
—— ABCP 22 " SM
—— Mainz/CLS 22 ——
Rough dets-driven
—a— ETMC 22 hybrid using CMD-3
. Fermilab/HPQCD /MILC 23 ey G
oy RBC,;UKQCD 23 175 180 185 190 185 200 205 210 215
_— Data-based BBGKMP 23 a, % 10° — 1165900
i Data-based (CMD3) BEGEMP 23 IMPORTANT: THIS PLOT IS VERY ROUGH!
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Wilge 5 10 * Itis purely for demonstration purposes — should not be taken as finall

Until differences are understood, and intense scrutiny of new/old results is complete, no

conclusions can be drawn about the validity of SM estimates. A lot of work still to be done...

With CMD-3: 205.6(1.6) x 10°10




Impact on the IL, Iqc W2, W, and W, results
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CONCLUSIONS

* With current EM R(s) data, significant data-driven/lattice discrepancies, especially for IL,
lgc RBC/UKQCD intermediate window (W1) and improved EWSR (W ., W ,.) weightings

e Currently known lattice/data-driven discrepancies all disappear if CMD-3 1Tt cross-
section results correct [resolution of CMD-3/BaBar/KLOE discrepancy of high interest]

e (Improved) EWSRs as a potential approach for exploring potential discrepancies in
different regions of s (in this talk, focusing on the p peak region, but alternatives
focusing on other regions of interest as well)

* C(t) results needed to determine a//"* and a;/'* and/or components thereof also

provide results for the lattice side of any related EWSR: further exploration of EWSR
weight choices in conjunction with new lattice data thus also of interest
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HLT IMPLEMENTATION OF THE EWSR “CAST” CONSTRUCTION

Given the mold function, minimize / dE|w, (E; {t;}, {z;})/E* — 21/1/'(}32)/E|2

Ein

which has the solution

n
.xi = ZA;lf} with AU — = dEE_{ti—l_tj)E’ fi —_ me dEe—tiEw(EQ)/E
_’l'=]_ Elh Eth

For a chosen set of time values this gives the coefficients I ;



HLT IMPLEMENTATION OF THE EWSR “CAST” CONSTRUCTION

Given the mold function, minimize f dE|w,(E:; {t;},{z;})/E* — ZVI/’(EE)/E|2

Ein

which has the solution

n
X = Z_Aalf} with AU — fE: dEe_{ti"‘tj)E’ fi — ZfE:n dE'e“"EW(EZ)/E
j=1

For a chosen set of time values this gives the coefficients & j
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HLT IMPLEMENTATION OF THE EWSR “CAST” CONSTRUCTION

Given the mold function, minimize / dE |wn (E; {t;}, {=;})/E? — 21r’V(E’2)/JEJ'|2

Fin

which has the solution

(3
Xi = ZAEIJF; with A;; = / dEe—(t+1)E
j=1

ij e fg = 2] dEe_t"EW(Ez)fE

Eu,

Hansen, Lupo, Tantalo '19

For a chosen set of time values this gives the coefficients & 7

2+4fs Wis(s)

t; —3,6,9,12, 15 GeV~ ! ~ 0.6, 1.2, 1.8, 2.4, 3 fm

W&,S X1 = 34.0249, Xy = 870.640, X3 = —5501.14,

x4 =9933.01, x5 =—5284.24.
[1 5 1.0 1.5 {;inz(fev 25 3.0 3.521
expohehﬁat
R(s) data rational weight weight
R-ratio rel. error || lattice rel. error | lattice rel. error
Wis || 0.4756(16) 0.3% 0.468(26) 5.6% 0.496(17) 3.4%
Was || 0.08912(34) 0.4% 0.0838(33) 3.9% 0.0798(18) 2.3%

DB, Golterman, Maltman, and Peris, '22

Lattice errors: ABGP22 IL, Igc only
avoid comparing central values



AN IMPROVED EWSR “CAST” CONSTRUCTION

e The HLT minimization of [ dE|wn(E; {t;}, {z;})/ B> — 2W(E?) /E|*
Etn

n
Xi =ZA;-}1f i with A= / " dEeUE, f =2 /E " dEe"EW(E?)/E
=

Ey, h

can be modified to remove the small eigenvalues of the matrix A via
AN =(1-DA+ 11,

This removes eigenvalues < \ and reduce the range of the values of {;}.

Wz,s ix; =44.8916,  x;=590933,  x;3=-3373.53, SLgnL-fi.canELj reduced values

A=10""
X4 = 3?1686, X5 = 879.149. -’.}*F N and .2

W5t x;=340249, x,=870.640, x;=-5501.14,
X4= 993301, X5 = —5284.24,



CMD-3 vs THE KNT19 COMBINATION
(from A. Keshavarzi, Lattice 2023)

AR CMD-3 compared to KNT19

The Urfversizy of Manchester
In collaboration with Genessa Banton, Dh:lg} Boito, Maarten Golterman, Kim Maltman & Santi Peris. GMD‘S [F Ignﬂtﬂ'\l’ et El, 3rx|\':23ﬂ2aﬂ8334]

To be able to compare CMD-3 with KNT19 data combination: !
» Data published as pion form factor, |E,|%.

+ Must subtract vacuum polarisation effects using Fedor
Ignatov's VP correction update.

» Must include final-state-radiation effects.
+ Put data on fine, common binning.

t KNT19
{ CMD-3

Rpsg-(5)
& N & @I @

(]
=

In the full 2w data combination range, the KNT19 analysis
found:

af*™ (0305 — 1.937 GeV) = (503.46 + 1.91) x 1071,

Norrnallsad

Standard Deviatlons (o) Difference (9}

Replacing KNT19 2pi data in the region 0.33 - 1.20 GeV with
CMD-3 data:

[1,]

af*™ (0.305 - 1.937 GeV) = (525.17 + 4.18) x 10719

:_ mﬂdl‘ﬂtiﬂ ﬁt . o =.; -;_-!

MNeglecting possible correlations between e.g9. CMD-3 and
CMD-2, this results in a difference of:

Rl Y S 1 e 0 =
KB

AaT"™ = (21.71 +4.96) X 1071° = 440,

a4 05 0.5 4. 1 0.9 1a 11
This removes the experiment vs. SM Muon g-2 discrepancy.
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