WINDOW CONTRIBUTIONS TO a_{μ} & THE LATTICE-DISPERSIVE HVP DISCREPANCY

Kim Maltman, York University

with Genessa Benton, Diogo Boito, Maarten Golterman, Alex Keshavarzi and Santi Peris

DB, MG, KM, SP, PRD105 (2022) 093003 [2203.05070 [hep-ph]] DB, MG, KM, SP, PRD107 (2023) 034512 [2210.13677 [hep-ph]] DB, MG, KM, SP, PRD107 (2023) 074001 [2211.11055 [hep-ph]] GB, DB, MG, AK, KM, SP, PRLxxx (2023) [2306.16808 [hep-ph]] GB, DB, MG, AK, KM, SP, arXiv: 2311.09523 [hep-ph]

CONTEXT: CURRENT FORMS OF THE LATTICE-DISPERSIVE HVP DISCREPANCY

SM expectations for a_{μ} with dispersive vs lattice HVP

Post-FNAL Run2/3: 4.2 $\sigma \rightarrow 5.0 \sigma$

CONTEXT: RBC/UKQCD intermediate window (W1) quantities (x 10¹⁰)

• The full intermediate window a_{μ}^{W1}

• IL, lqc intermediate window $a_{\mu}^{W1,lqc}$

GB, DB, MG, AK, KM, SP [PRLxxx [2306.16808] and below]

NOTATION, CONVENTIONS, FLAVOR DECOMPOSITIONS

$$(q_{\mu}q_{\nu} - q^{2}g_{\mu\nu}) \Pi_{EM}(q^{2}) = i \int d^{4}x \, e^{iq \cdot x} \langle O|T \left(J_{\mu}^{EM}(x)J_{\nu}^{EM}(0)\right)|O\rangle$$
$$\hat{\Pi}_{EM}(q^{2}) \equiv \Pi_{EM}(q^{2}) - \Pi_{EM}(0) = q^{2} \int_{m_{x^{0}}^{2}}^{\infty} ds \frac{\rho_{EM}(s)}{s(s-q^{2}+i\epsilon)} \qquad \rho_{EM}(s) \equiv \frac{1}{\pi} Im \Pi_{EM}(s)$$

SU(3)_F decompositions

$$J_{\mu}^{EM} = V_{\mu}^{3} + \frac{1}{\sqrt{3}}V_{\mu}^{8} \equiv J_{\mu}^{EM,3} + J_{\mu}^{EM,8} + \cdots \qquad \hat{\Pi}_{EM}(Q^{2}) = \hat{\Pi}_{EM}^{33}(Q^{2}) + \frac{2}{\sqrt{3}}\hat{\Pi}_{EM}^{38}(Q^{2}) + \frac{1}{3}\hat{\Pi}_{EM}^{88}(Q^{2}) = \frac{1}{2}\left(\bar{u}\gamma_{\mu}u - d\gamma_{\mu}d\right) + \frac{1}{6}\left(\bar{u}\gamma_{\mu}u + d\gamma_{\mu}d - 2\bar{s}\gamma_{\mu}s\right) + \cdots \qquad \hat{\Pi}_{EM}(Q^{2}) = \hat{\Pi}_{EM}^{33}(Q^{2}) + \frac{2}{\sqrt{3}}\hat{\Pi}_{EM}^{38}(Q^{2}) + \frac{1}{3}\hat{\Pi}_{EM}^{88}(Q^{2}) = \hat{\Pi}_{EM}^{1-1}(Q^{2}) + \hat{\Pi}_{EM}^{MI}(Q^{2}) + \hat{\Pi}_{EM}^{1-0}(Q^{2})$$

I=1, G-parity + I=0, G-parity -

+ similarly for $\rho_{EM}(s)$

$$a_{\mu}^{X} = a_{\mu}^{X,33} + \frac{2}{\sqrt{3}}a_{\mu}^{X,38} + \frac{1}{3}a_{\mu}^{X,88} \equiv a_{\mu}^{X,I-1} + a_{\mu}^{X,MI} + a_{\mu}^{X,I-0}$$

NOTATION and CONVENTIONS: a_{μ}^{HVP} DISPERSIVE REPRESENTATION

$$a_{\mu}^{\rm HVP} = \frac{4\alpha^2 m_{\mu}^2}{3} \int_{m_{\pi}^2}^{\infty} ds \, \frac{\hat{K}(s)}{s^2} \rho_{\rm EM}(s) \qquad \qquad \rho_{\rm EM}(s) = \frac{1}{12\pi^2} R(s)$$

Compilation of *R*-ratio data

NOTATION and CONVENTIONS: a_{μ} LATTICE REPRESENTATION

$$C(t) = \frac{1}{3} \sum_{i=1}^{3} \int d^3x \langle j_i^{\text{EM}}(\vec{x}, t) j_i^{\text{EM}}(0) \rangle = \frac{1}{2} \int_{m_{\pi}^2}^{\infty} ds \sqrt{s} \, e^{-\sqrt{s}t} \, \rho_{\text{EM}}(s) \quad (t > 0)$$

Bernecker and Meyer 'II

$$\hat{\Pi}(Q^2) = \int_0^\infty dt \left(\frac{4\sin^2(Qt/2)}{Q^2} - t^2\right) C(t)$$

Leading order contribution to $a_{\mu}^{\rm HVP}$

$$a_{\mu}^{\text{HVP}} = 2 \int_{0}^{\infty} dt \, w(t) C(t) \qquad \qquad \frac{\hat{K}(s)}{s^{2}} = \frac{3\sqrt{s}}{4\alpha^{2}m_{\mu}^{2}} \int_{0}^{\infty} dt \, w(t) \, e^{-\sqrt{s}t}$$

Light flavor lattice contributions

- isospin limit (IL) light-quark (u, d) connected (lqc): I=0 and 1
- IL strange-quark connected (sconn) and uds disconnected (disc): I=0 only
- EM (connected and disconnected): all of I=0, I=1 and MI
- strong isospin-breaking (SIB) (connected and disconnected): to O(m_d-m_u): MI only

ISOSPIN LIMIT RELATIONS

$$a_{\mu}^{IL,lgc} = \frac{10}{9} a_{\mu}^{I-1}$$
 $a_{\mu}^{sconn+disc} = a_{\mu}^{I-0} - \frac{1}{9} a_{\mu}^{I-1}$

with similar representations for re-weighted (windowed) IL, lqc and sconn+disc integrals

LATTICE-MOTIVATED INTERMEDIATE WINDOW QUANTITIES

- Reduce lattice errors by cutting out short- and long-t contributions
- RBC/UKQCD style intermediate-window reweighting:

$$a_{\mu}^{W} = 2 \int_{0}^{\infty} dt f_{W}(t; t_{0}, t_{1}, \Delta) \left[w(t)C(t) \right] \qquad f_{W}(t; t_{0}, t_{1}, \Delta) = \frac{1}{2} \left[tanh\left(\frac{t - t_{0}}{\Delta}\right) - tanh\left(\frac{t - t_{1}}{\Delta}\right) \right]$$

6

- RBC/UKQCD (W1): $t_0 = 0.4$ fm, $t_1 = 1.0$ fm, $\Delta = 0.15$ fm
- ABGP (W2): $t_0 = 1.5$ fm, $t_1 = 1.9$ fm, $\Delta = 0.15$ fm

"WINDOWS" EMPHASIZING DIFFERENT REGIONS IN s

• Examples of motivation for focusing on specific regions in s:

- > BaBar/KLOE/CMD-3 $\pi\pi$ data discrepancies in dominant ρ peak region
- \geq EM/ τ +CVC discrepancies for 4π contributions at higher s
- Key question: can this be done without blowing up errors on the corresponding lattice quantities? Answer: Yes: exponential-weight sum rules
 - > Appropriately chosen/tuned linear combinations of exponentials in Euclidean t
 - > Tuning to focus of desired region of s
 - \geq {t_k} chosen to avoid large Euclidean t and control lattice errors

EXPONENTIAL WEIGHT SUM RULES (EWSRs)

For
$$w_n(E) = \sum_{j=1}^n x_j E^2 e^{-Et_j}$$
, $C(t) = \int_{E_{th}}^{\infty} dE E^2 e^{-Et} \rho(E^2)$, $t > 0$

$$\Rightarrow \begin{bmatrix} \text{Exponential-weight sum rules} \\ \int_{E_{th}}^{\infty} dE w_n(E) \rho(E) = \sum_{j=1}^n x_j C(t_j) \\ R(s) \text{ data} & \text{lattice} \end{bmatrix}$$
Hansen, Lupo, Tantalo 2019
Hashimoto, Ishikawa 2020

Basic analysis strategy [Boito, Golterman, KM, Peris, 2022]

- Pick a physically interesting w(s)=2E W(E) (the "mold")
- Build an approximation, w_n (E; {x_j}, {t_j}) (the "cast") using a small number of externally chosen {t_i} and appropriately adjusted {x_i}
- Choose {t_i} to keep all C(t_i) errors small (avoiding large t by construction)
- Provided the localization-in-s of the "cast" is similar to that of the "mold", throw away the mold and work instead with the exact cast sum rule

"IMPROVED" VS "UNIMPROVED" EWSR CASTS

- "Unimproved" casts from strict HLT implementation; "improved" from reduced fit condition number construction
- "Improved" casts (slightly) less similar to the "molds"
- However, still rather close to those "molds"; hence provide essentially the same localization-in-s as the original "molds" or unimproved "casts"

RESULTS OF THE IMPROVED EWSR "CAST" CONSTRUCTION

		R(s) data	ra	tional weight	W'	exponential weight
	R-ratio	rel. error	lattice	rel. error	lattice	rel. error
W_{15}	0.4756(16)	0.3%	0.468(26)	5.6%	0.496(17)	3.4%
W_{25}	0.08912(34)	0.4%	0.0838(33)	3.9%	0.0798(18)	2.3%

improved exponential weights

	lattice	rel. error
\widehat{W}_{15}	0.4669(68)	1.5%
\widehat{W}_{25}	0.0824(10)	1.2%

DB, Golterman, Maltman, and Peris, '22

Lattice errors: ABGP22 IL, lqc only avoid comparing central values

- Significant reduction in lattice errors (though still ~3-5 larger than dispersive)
- Further improvement possible (e.g., through modified {t_j} set/range choices) but best explored in conjunction with detailed error studies with new lattice data
- Further reduction in lattice errors also expected c.f. ABGP22

PART II: IL, lqc AND sconn+disc RESULTS

• Data input for the dispersive side of IL, lqc and sconn+disc sum rules

- > Need s-dependent exclusive-mode input: here, from KNT19 (to E_{CM}=1.937 GeV)
- ➢ G-parity I=0, 1 separation for G-parity eigenstate exclusive modes
- External input for dominant G-parity-ambiguous modes (I=1 $K\overline{K}$ from BaBar 2018 $\tau \rightarrow K\overline{K}\upsilon_{\tau}$ +CVC, BaBar 2007 Dalitz plot I=0/1 separation for $K\overline{K}\pi$, PDG ρ, ω, φ EM decay constants and $\pi^{0}\gamma$, $\eta\gamma$ widths for $\pi^{0}\gamma$, $\eta\gamma$ I=0/1/MI separation)
- \succ Maximally conservative anti-correlated 50±50% split if no external input
- pQCD(+DVs) for inclusive contributions (E_{CM}>1.937 GeV)
- Small inclusive I=0, 1 EM IB corrections from lattice
- Data-based corrections for MI EM+SIB contamination of nominally I=0, 1 sums
 - A dominant ρ-ω region 2π , 3π : Hoferichter et al. 2022/23 (dispersive)
 - other nominally I=0, 1 modes: O(1%) additional uncertainty estimate
- Here: new IL, lqc and sconn+disc results, including windows

ANATOMY OF THE DATA-BASED DETERMINATION OF $a_{\mu}^{HVP,lqc} = a_{\mu}^{lqc,IL}$

• With KNT19 input:

 $a_{\mu}^{lqc,IL} = \left(\begin{array}{c} \frac{10}{9}\right) \left(543.2(2.1) + 3.2(1.0) + 28.27(2) + 0.26(12)\right) + 0.93(59) - 4.21(47)$ $\begin{array}{c} \textbf{G-par + G-par ambig} \quad pQCD \quad DVs \quad EM \ IB \quad MI \ IB \\ 95\% \quad 0.56\% \quad 5.0\% \quad 0.15\% \quad -0.66\% \\ \text{Colangelo, Hoferichter,} \\ \text{Kubis, Stoffer 2022 (CHKS22)} \end{array}$

• Full $a_{\mu}^{lqc,IL}$ x 10¹⁰ results:

 $a_{\mu}^{lqc,IL}$ = 635.2(2.7) (KNT) $a_{\mu}^{lqc,IL}$ = 638.3(4.1) (DHMZ)

• Some tension with lattice (BMW)

RBC/UKQCD INTERMEDIATE WINDOW IL, Iqc RESULTS

G=+ mode X	$a^{W1}_{\mu,X}$ x 1010	$a_{\mu}^{W1,lqc}$ contributions (in units of 10 ¹⁰)		
low-s $\pi^+\pi^-$	0.02(00)	→ G=+:	186.93(80)	
$\pi^+\pi^-$	144.13(49)	$\succ K\overline{K}:$ $\succ K\overline{K}\pi:$	0.58(7) 0.52(9)	
$2\pi^+ 2\pi^-$	9.29(13)	$\succ K\overline{K}\pi\pi$:	0.60(60)	
$\pi^{+}\pi^{-}2\pi^{0}$	11.94(48)	$\succ \pi^0 \gamma + \eta \gamma$	0.14(1)	
$3\pi^{+}3\pi^{-}$ (no ω)	0.14(01)	➢ other mixed G:	0.05(5)	
$2\pi^+ 2\pi^- 2\pi^0$ (no η)	0.83(11)	\triangleright pQCD $\pm DV$ s:	10.90 ± 0.17	
$\pi^{+}\pi^{-}4\pi^{0}$ (no η)	0.13(13)	EM corr'n:	-0.04(6)	
$\eta \pi^+ \pi^-$	0.85(03)	> 2π (±other) MI corr'n:	-0.96(7)±0.29	
$\eta 2\pi^{+}2\pi^{-}$	0.05(01)	[CHKS22 2π MI corr'n: JHI	EP 10 (2022) 032]	
$\eta \pi^{+} \pi^{-} 2 \pi^{0}$	0.07(01)			
$\omega (\rightarrow \pi^{0} \gamma) \pi^{0}$	0.53(01)	$a^{W1,lqc} = 198.9(1.7)$	1) $x = 10^{-10}$	
$\omega (\rightarrow npp)3\pi$	0.10(02)	u_{μ} = 150.5(1.2		
ωηπ ^ο	0.15(03)			
TOTAL	168.24(72)	G. Benton, DB, MG, AK, KM, SP [PRLxxx, 2306.16808]	

RBC/UKQCD INTERMEDIATE WINDOW DISPERSIVE IL, lqc c.f. LATTICE

• Very significant tension between dispersive and lattice W1 IL, lqc results

IL, Iqc DISPERSIVE vs LATTICE RESULTS FOR OTHER INTERMEDIATE WINDOWS

- Lattice EM results not available so neglect EM I=0, 1 corrections for now (plausible based on RBC/UKQCD intermediate window result)
- For IL, lqc case, windowed versions of CHKS22 2π MI correction (provided by M. Hoferichter and P. Stoffer: thanks!)
- For sconn+disc case, windowed ρ-ω region 3π MI correction of Hoferichter, Hoid, Kubis, Schuh (JHEP 08 (2023) 208) (HHKS23)
- Compare IL, lqc dispersive and ABGP22-based lattice results

ABGP22 INTERMEDIATE WINDOW (W2) RESULTS

• RBC/UKQCD-style intermediate window, designed to be longer distance, more amenable to possible use of ChPT

lattice results

Light-quark connected from KNT19 R(s) data

$$a_{\mu}^{W2,lqc}$$
 = 93.75(36) x 10⁻¹⁰

Aubin, Blum, Golterman, Peris '22 $a_{\mu}^{W2,lqc} = 102.1(2.4) \times 10^{-10}$ Fermilab/HPQCD/MILC '23

 $a_{\mu}^{W2,\text{lqc}} = 100.7(3.2) \times 10^{-10}$

IMPROVED EWSR WEIGHT ($\widehat{W}_{15}, \widehat{W}_{25}$) IL, lqc RESULTS

•
$$I_W^{lqc} \equiv \int_{th}^{\infty} ds \, W(s) \, \rho_{EM}^{IL, lqc}(s)$$

Dispersive

$$I_{\widehat{W}_{15}}^{IL,lqc} = 42.80(16) \times 10^{-2}$$

5.6 σ

$$I_{\widehat{W}_{25}}^{IL,lqc} = 78.99(45) \times 10^{-3}$$

Benton, Boito, Golterman, Keshavarzi, Maltman, Peris, 2311.09523

$$I_{\widehat{W}_{15}}^{IL,lqc} = 46.69(68) \times 10^{-2}$$

$$I_{\widehat{W}_{25}}^{IL,lqc} = 82.4(1.0) \times 10^{-3}$$

systematic errors on lattice results still to be assessed

• Another sign of tension between dispersive and lattice IL, lqc results

sconn+disc $a_{\mu}^{sconn+disc} = a_{\mu}^{s+lqd,IL}$, $a_{\mu}^{W1,s+lqd}$ results

- Update of PRD105 (2022) 093003 a^{s+lqd,IL}
- **RBC/UKQCD** window version $a_{\mu}^{W1,s+lqd}$

POTENTIAL IMPACT OF THE NEW CMD-3 $\pi\pi$ DATA

- Interim conclusion: current published cross sections lead to
 - good lattice/data-driven agreement for sconn+disc quantities
 - significant disagreement (data-driven<lattice) for lqc quantities</p>
 - $ightarrow \Rightarrow$ lattice vs. data-driven discrepancy essentially all from lqc contribution
- However, new CMD-3 study [2302.8834 [hep-ex]] finds ρ peak region $\pi\pi$ cross sections significantly higher than CMD-2, BaBar, KLOE, BESIII, SND
 - > Still undergoing scrutiny, but no obvious problems to date
 - > Replacing $\pi\pi$ HVP in CMD-3 region with CMD-3 only reduces SM-expt'l a_{μ} discrepancy to 0.9 σ [CMD-3 2309.12910 [hep-ex] and many others]
 - What about the impact on the KNT19-based lqc discrepancies above? CAUTION: PRELIMINARY EXPLORATION ONLY

i.e., NOT a new KNT-style 2023 2π combination

A. Keshavarzi Lattice 2023: Impact on $a_{\mu}^{W1,lqc}$ and a_{μ}^{HVP}

Impact of CMD-3

CMD-3 [F. Ignatov et al, arXiv:2302.08834]

The University of Manchester

DISCLAIMER: these are <u>NOT</u> new updates or combinations including the CMD-3 data – simply demonstrations of the impact of the CMD-3 data alone.

In collaboration with Genessa Benton, Diogo Boito, Maarten Golterman, Kim Maltman & Santi Peris [arXiv:2306.16808].

TI White Paper result has been substituted by CMD-3 only for 0.33 → 1.0 GeV.

The NLO HVP has not been updated.

It is purely for demonstration purposes → should not be taken as final!

Until differences are understood, and intense scrutiny of new/old results is complete, no conclusions can be drawn about the validity of SM estimates. A lot of work still to be done...

With CMD-3: 205.6(1.6) x 10⁻¹⁰

Impact on the IL, Iqc W2, \widehat{W}_{15} and \widehat{W}_{25} results

- KNT19 $I_{\widehat{W}_{15}}^{IL,lqc}$: 0.4280(16) \rightarrow 0.4483(37) c.f. lattice 0.4669(58) (5.6 $\sigma \rightarrow$ 2.7 σ) KNT19 $I_{\widehat{W}_{2_{\tau}}}^{IL,lqc}$: 0.0790(5) \rightarrow 0.0815(6) c.f. lattice 0.0824(10) (3.1 $\sigma \rightarrow$ 0.8 σ)
- All dispersive-lattice differences strongly reduced with CMD-3 $\pi\pi$ input

CONCLUSIONS

- With current EM R(s) data, significant data-driven/lattice discrepancies, especially for IL, lqc RBC/UKQCD intermediate window (W1) and improved EWSR (\hat{W}_{15} , \hat{W}_{25}) weightings
- Currently known lattice/data-driven discrepancies all disappear if CMD-3 $\pi\pi$ cross-section results correct [resolution of CMD-3/BaBar/KLOE discrepancy of high interest]
- (Improved) EWSRs as a potential approach for exploring potential discrepancies in different regions of s (in this talk, focusing on the ρ peak region, but alternatives focusing on other regions of interest as well)
- C(t) results needed to determine a_{μ}^{HVP} and a_{μ}^{W1} and/or components thereof also provide results for the lattice side of any related EWSR: further exploration of EWSR weight choices in conjunction with new lattice data thus also of interest

BACKUP SLIDES

HLT IMPLEMENTATION OF THE EWSR "CAST" CONSTRUCTION

Given the mold function, minimize

$$\int_{E_{\rm th}}^{\infty} dE \left| w_n(E; \{t_j\}, \{x_j\}) / E^2 - 2W(E^2) / E \right|^2$$

which has the solution

$$x_i = \sum_{j=1}^n A_{ij}^{-1} f_j$$
 with $A_{ij} = \int_{E_{th}}^\infty dE e^{-(t_i + t_j)E}$, $f_i = 2 \int_{E_{th}}^\infty dE e^{-t_i E} W(E^2)/E$

Hansen, Lupo, Tantalo '19

For a chosen set of time values this gives the coefficients x_j

HLT IMPLEMENTATION OF THE EWSR "CAST" CONSTRUCTION

Given the mold function, minimize

$$\int_{E_{\rm th}}^{\infty} dE \left| w_n(E; \{t_j\}, \{x_j\}) / E^2 - 2W(E^2) / E \right|^2$$

which has the solution

$$x_i = \sum_{j=1}^n A_{ij}^{-1} f_j$$
 with $A_{ij} = \int_{E_{th}}^\infty dE e^{-(t_i + t_j)E}$, $f_i = 2 \int_{E_{th}}^\infty dE e^{-t_i E} W(E^2) / E$

Hansen, Lupo, Tantalo '19

For a chosen set of time values this gives the coefficients x_j

$$\begin{split} t_j &= 3,\ 6,\ 9,\ 12,\ 15\ {\rm GeV}^{-1} \approx 0.6,\ 1.2,\ 1.8,\ 2.4,\ 3\ {\rm fm} \\ W_{2,5}'\colon x_1 &= 34.0249, \qquad x_2 = 870.640, \qquad x_3 = -5501.14, \\ x_4 &= 9933.01, \qquad x_5 = -5284.24. \end{split}$$

HLT IMPLEMENTATION OF THE EWSR "CAST" CONSTRUCTION

Given the mold function, minimize

$$\int_{E_{\rm th}}^{\infty} dE \left| w_n(E; \{t_j\}, \{x_j\}) / E^2 - 2W(E^2) / E \right|^2$$

which has the solution

$$x_{i} = \sum_{j=1}^{n} A_{ij}^{-1} f_{j} \qquad \text{with} \qquad A_{ij} = \int_{E_{\text{th}}}^{\infty} dE e^{-(t_{i}+t_{j})E}, \qquad f_{i} = 2 \int_{E_{\text{th}}}^{\infty} dE e^{-t_{i}E} W(E^{2})/E$$

Hansen, Lupo, Tantalo '19

For a chosen set of time values this gives the coefficients x_i

$$t_{j} = 3, 6, 9, 12, 15 \text{ GeV}^{-1} \approx 0.6, 1.2, 1.8, 2.4, 3 \text{ fm}$$

$$W'_{2,5} : x_{1} = 34.0249, \quad x_{2} = 870.640, \quad x_{3} = -5501.14,$$

$$x_{4} = 9933.01, \quad x_{5} = -5284.24.$$

		R(s) data	rational weight			exponential weight
	R-ratio	rel. error	lattice	rel. error	lattice	rel. error
W_{15}	0.4756(16)	0.3%	0.468(26)	5.6%	0.496(17)	3.4%
W_{25}	0.08912(34)	0.4%	0.0838(33)	3.9%	0.0798(18)	2.3%

Lattice errors: ABGP22 IL, lqc only avoid comparing central values

DB, Golterman, Maltman, and Peris, '22

AN IMPROVED EWSR "CAST" CONSTRUCTION

• The HLT minimization of $\int_{E_{\text{th}}}^{\infty} dE \left| w_n(E; \{t_j\}, \{x_j\}) / E^2 - 2W(E^2) / E \right|^2$

$$x_i = \sum_{j=1}^n A_{ij}^{-1} f_j$$
 with $A_{ij} = \int_{E_{th}}^\infty dE e^{-(t_i + t_j)E}$, $f_i = 2 \int_{E_{th}}^\infty dE e^{-t_i E} W(E^2)/E$

can be modified to remove the small eigenvalues of the matrix A via

$$\hat{A}(\lambda) = (1 - \lambda)A + \lambda \mathbf{1}_n$$

This removes eigenvalues $< \lambda$ and reduce the range of the values of $\{x_i\}$.

$$\lambda = 10^{-9}$$

$$\hat{W}_{2,5}: x_1 = 44.8916, \quad x_2 = 590.933, \quad x_3 = -3373.53,$$

$$x_4 = 3716.86, \quad x_5 = 879.149.$$

$$K'_{2,5}: x_1 = 34.0249, \quad x_2 = 870.640, \quad x_3 = -5501.14,$$

$$x_4 = 9933.01, \quad x_5 = -5284.24.$$

CMD-3 vs THE KNT19 COMBINATION (from A. Keshavarzi, Lattice 2023)

CMD-3 compared to KNT19

In collaboration with Genessa Benton, Diogo Boito, Maarten Golterman, Kim Maltman & Santi Peris.

CMD-3 [F. Ignatov et al, arXiv:2302.08834]

To be able to compare CMD-3 with KNT19 data combination:

- Data published as pion form factor, |F_π|².
- Must subtract vacuum polarisation effects using Fedor Ignatov's VP correction update.
- · Must include final-state-radiation effects.
- · Put data on fine, common binning.

In the full 2π data combination range, the KNT19 analysis found:

 $a_{\mu}^{\pi^+\pi^-}$ (0.305 \rightarrow 1.937 GeV) = (503.46 \pm 1.91) \times 10⁻¹⁰.

Replacing KNT19 2pi data in the region 0.33 \rightarrow 1.20 GeV with CMD-3 data:

$$a_{\mu}^{\pi^+\pi^-}(0.305 \rightarrow 1.937 \text{ GeV}) = (525.17 \pm 4.18) \times 10^{-10}.$$

Neglecting possible correlations between e.g. CMD-3 and CMD-2, this results in a difference of:

$$\Delta a_{\mu}^{\pi^{+}\pi^{-}} = (21.71 \pm 4.96) \times 10^{-10} \rightarrow 4.4\sigma$$

This removes the experiment vs. SM Muon g-2 discrepancy.

