The determination of the strong coupling from au decays: facts vs. myths

Diogo Boito, Maarten Golterman, Kim Maltman and Santiago Peris

17th Workshop on Tau-Lepton Physics, Louisville, KY, Dec. 6, 2023

Motivation

• Two different approaches to the determination of α_s from hadronic τ decays:

```
"truncated OPE" (tOPE) strategy (Pich and others) vs. "duality-violation" (DV) strategy (Boito et al.)
```

- Many unsubstantiated criticisms of the DV strategy
 Now finally a paper providing details (Pich & Rodríguez-Sánchez, JHEP 07 (2022) 145 (PRS))
- This talk: all criticisms of PRS in the JHEP paper are misleading or incorrect
 DV strategy has the tools to check this (and thus validate this strategy)
- In contrast, several criticisms of tOPE remain unanswered (Boito et al., PRD 95 (2017); PRD 100 (2019))

Finite energy sum rules

- 1) Both methods are based on FESRs: $\int_0^{s_0} ds\, w(s)\, \rho(s) = -\frac{1}{2\pi i} \oint_{|z|=s_0} dz\, w(z)\, \Pi(z)$
- $\rho(s)$ is experimentally measured spectral function (here, vector, non-strange, isospin 1)
- $\Pi(z)$ is (scalar) current two-point function, $\Pi_{\mu\nu}(q^2)=(q_\mu q_\nu-q^2 g_{\mu\nu})\Pi(q^2)$ from theory (QCD)
- w(z) is polynomial in z/s_0
- 2) Approximate right-hand side by:

$$-\frac{1}{2\pi i} \oint_{|z|=s_0} dz \, w(z) \left(\Pi_{\text{pert.th.}}(z; \alpha_s) + \Pi_{\text{OPE}}(z) \right) + \int_{s_0}^{\infty} ds \, w(s) \, \rho_{\text{DV}}(s)$$

 $\Pi_{\mathrm{pert.th.}}(z;\alpha_s)$ known to α_s^4 (Baikov et al. '08, Herzog et al. '17)

OPE: expansion in powers of 1/z – known to be an asymptotic expansion (at best)

DV: resonance oscillations seen in spectral functions – not captured by pert.th. + OPE

3) Choose strategy, tOPE (Pich and others) or DV (Boito et al.), next slide

Strategies

$$\text{FESR:} \quad \int_0^{s_0} ds \, w(s \, \rho(s) = -\frac{1}{2\pi i} \oint_{|z| = s_0} dz \, w(z) \left(\Pi_{\text{pert.th.}}(z; \alpha_s) + \Pi_{\text{OPE}}(z) \right) + \int_{s_0}^{\infty} ds \, w(s) \, \rho_{\text{DV}}(s)$$

- tOPE: set DV part equal to zero (this is a model for duality violations!)
 - include high-degree polynomials (with DVs suppressed via zeros at $z=s_0$)
 - use a single s_0 value, as close as possible to $m_{ au}^2$, dropping OPE parameters until # fit parameters < # FESRs; OPE treated as if convergent to very high order (up to $1/z^8$)

DV: Since OPE is asymptotic, use only to low orders (max $1/z^5$), don't drop OPE parameters \geq 1 FESR with unsuppressed DVs, model with QCD-motivated ansatz (Regge theory and $1/N_c$)

$$\rho_{\rm DV}(s) = e^{-\delta - \gamma s} \sin(\alpha + \beta s + \mathcal{O}(\log s)) \left(1 + \mathcal{O}\left(\frac{1}{s}, \frac{1}{N_c}, \frac{1}{\log s}\right) \right)$$

use, and test consistency of approach by varying, s_0 between $\sim 1.5~{\rm GeV}^2$ and m_{τ}^2 (Catà et al. '05, Boito et al. '17)

Experimental data (non-strange vector spectral function):

OPAL: Ackerstaff et al. '98

ALEPH: Schael et al. '05, Davier et al. '14

Combination: Boito et al. '20

Residual modes from (mostly) electroproduction (instead of Monte-Carlo) Boito et al. '20

Criticism 1: DV model is not stable against variations

Try varying the DV model:
$$\rho_{\mathrm{DV}}(s) = \left(1 + \frac{c}{s}\right)e^{-\delta - \gamma s}\sin(\alpha + \beta s)$$

$$c = 0 \qquad \Rightarrow \qquad \alpha_s(m_\tau^2) = 0.296$$
 PRS '22: use
$$c = -1.35~\mathrm{GeV}^2 \qquad \Rightarrow \qquad \alpha_s(m_\tau^2) = 0.319$$

$$c = -2~\mathrm{GeV}^2 \qquad \Rightarrow \qquad \alpha_s(m_\tau^2) = 0.260$$

(Note huge values of c , this is not a small correction for $s\sim 2~{
m GeV}^2$)

Obtained using non-strange ALEPH vector spectral function

Criticism 1: DV model is not stable against variations

Try varying the DV model:
$$\rho_{\mathrm{DV}}(s) = \left(1 + \frac{c}{s}\right)e^{-\delta - \gamma s}\sin(\alpha + \beta s)$$

$$c = 0 \qquad \Rightarrow \qquad \alpha_s(m_\tau^2) = 0.296 \pm 0.010$$
 PRS '22: use
$$c = -1.35 \; \mathrm{GeV}^2 \qquad \Rightarrow \qquad \alpha_s(m_\tau^2) = 0.319 \pm 0.016$$

$$c = -2 \; \mathrm{GeV}^2 \qquad \Rightarrow \qquad \alpha_s(m_\tau^2) = 0.260 \pm 0.089$$

ALEPH vector spectral function not precise enough for this test!

Criticism 1: DV model is not stable against variations

Try varying the DV model:
$$\rho_{\mathrm{DV}}(s) = \left(1 + \frac{c}{s}\right)e^{-\delta - \gamma s}\sin(\alpha + \beta s)$$

$$c = 0 \qquad \Rightarrow \qquad \alpha_s(m_\tau^2) = 0.296 \pm 0.010$$
 PRS '22: use
$$c = -1.35 \; \mathrm{GeV}^2 \qquad \Rightarrow \qquad \alpha_s(m_\tau^2) = 0.319 \pm 0.016$$

$$c = -2 \; \mathrm{GeV}^2 \qquad \Rightarrow \qquad \alpha_s(m_\tau^2) = 0.260 \pm 0.089$$

ALEPH vector spectral function not precise enough for this test! Use new vector spectral funtion:

rather
spectacular
stability!
(red point is our
central result)

Criticism 2: Logarithmic corrections to OPE

$$\text{FESR:} \qquad \int_0^{s_0} ds \, w(s \, \rho(s) = -\frac{1}{2\pi i} \oint_{|z|=s_0} dz \, w(z) \left(\Pi_{\text{pert.th.}}(z;\alpha_s) + \left(\Pi_{\text{OPE}}(z) \right) \right) + \int_{s_0}^{\infty} ds \, w(s) \, \rho_{\text{DV}}(s)$$

$$\Pi(q^2) = \sum_{k=1}^{\infty} \frac{C_{2k}(q^2)}{(-q^2)^k}$$
 $C_{2k}(q^2)$ Wilson coefficients

$$\text{Choose } C_{2k}(z) \text{ constant, then } -\frac{1}{2\pi i} \oint_{|z|=s_0} dz \, \left(\frac{z}{s_0}\right)^n \, \frac{C_{2k}}{(-z)^k} = \frac{C_{2(n+1)}}{(-s_0)^n} \quad \text{: control which OPE terms contribute}$$

$$Choose \ C_{2k}(z) = C_{2k}(\mu^2) \left(1 + \frac{L_{2k}}{L_{2k}} \log \frac{-s}{\mu^2} \right) \ then$$

$$-\frac{1}{2\pi i} \oint_{|z|=s_0} dz \ \left(\frac{z}{s_0} \right)^n \frac{C_{2k}}{(-z)^k} = \frac{C_{2(n+1)}}{(-s_0)^k} \left(\delta_{kn} + \frac{L_{2k}}{n-k} (1 - \delta_{kn}) \right)$$

 \Rightarrow higher-order logarithms (k) affect sum rules with low-degree polynomials (n)!

Criticism 2: Logarithmic corrections to OPE

$$\begin{array}{ll} \text{Choose} & C_{2k}(z) = C_{2k}(\mu^2) \left(1 + \frac{L_{2k}}{\log \frac{-s}{\mu^2}} \right) \text{ then} \\ \\ & - \frac{1}{2\pi i} \oint_{|z| = s_0} dz \, \left(\frac{z}{s_0} \right)^n \, \frac{C_{2k}}{(-z)^k} = \frac{C_{2(n+1)}}{(-s_0)^k} \left(\delta_{kn} + \frac{L_{2k}}{n-k} (1 - \delta_{kn}) \right) \end{array}$$

- \Rightarrow higher-order logarithms (k) affect sum rules with low-degree polynomials (n)!
- Little is known about the values of L_{2k} other than that they are suppressed by powers of α_s PRS '22 choose (rather arbitrarily) $L_{2k}=0.2$ is this reasonable?
- What we know: k = 2 logs suppressed by two powers of α_s , very small Using large-N factorization for k = 3 four-fermion operators: $|L_{2k=6}| = \frac{19}{63\pi} \, \alpha_s(s_0) \simeq 0.03$
- These are an order of magnitude smaller than PRS chose, and have no effect on the DV strategy

Criticism 3: DV strategy is "redundant" – additional weights do not add information

PRS "Theorem": The weight w(z)=1 in the DV strategy determines $\alpha_s(m_{\tau}^2)$ while the other weights, such as $w(z)=1-(z/s_0)^2$ are completely redundant, and only serve to determine higher-dimensional OPE coefficients, with no influence on $\alpha_s(m_{\tau}^2)$ and the fit quality.

- "Theorem" invalid due to logical/mathematical errors.
- No time for mathematics, but we'll demonstrate this through a few examples.
- This criticism does, in fact, apply to the tOPE strategy (backup slides).

Criticism 3: DV strategy is "tautological" – additional weights do not add information

PRS "Theorem": The weight w(z)=1 in the DV strategy determines $\alpha_s(m_{\tau}^2)$ while the other weights, such as $w(z)=1-(z/s_0)^2$ are completely redundant, and only serve to determine higher-dimensional OPE coefficients, with no influence on $\alpha_s(m_{\tau}^2)$ and the fit quality.

- Consider an example: (i) fit $\, \alpha_s(m_{ au}^2) \, {\rm and} \, {\rm DV} \, {\rm parameters} \, {\rm to} \, {\rm FESR} \, {\rm with} \, w(z) = 1 \,$
 - Then: (ii) fit again, now with weights w(z)=1 and $w(z)=1-(z/s_0)^2$ (add C_6)
 - (a) with correct $1/s_0^3$ scaling for OPE term $\propto C_6$
 - (b) with wrong $1/s_0^5$ scaling for OPE term $\propto C_6$
- According to this "theorem," fit should always give same value for $lpha_s(m_ au^2)$, adjusting C_6 ...

Criticism 3: DV strategy is "tautological" – additional weights do not add information

blue points: fit with w(z) = 1

green points: fit with w(z) = 1

and $w(z) = 1 - (z/s_0)^2$

 $1/s_0^3$ scaling

red points: fit with w(z) = 1

and $w(z) = 1 - (z/s_0)^2$

 $1/s_0^5$ scaling

blue and green fits not the same,

but very consistent

red fit very different and not consistent!

• According to this "theorem," fit should always give same value for $\alpha_s(m_{ au}^2)$: based on math mistake!

Criticism 4: DV strategy determines α_s at 1.55 GeV²

PRS claim: Using the weight w(z)=1 in the DV strategy determines $\alpha_s(m_{\tau}^2)$ at s_0^{\min} and uses the spectral function for $s>s_0^{\min}$ to fit the DV parameters.

Logical alternative:

DV strategy determines $\alpha_s(m_{\tau}^2)$ at $s_0^{\rm max}$ and uses the spectral function for $s < s_0^{\rm max}$ to fit DV parameters

Reality: all parameters obtained from fits using all data

Conclusions

- Longstanding controversy between truncated OPE and DV strategies for determining $lpha_s(m_ au^2)$ from hadronic au decays; new paper by PRS (finally) provides details of the criticisms
- All PRS criticism of DV strategy refuted based on math mistakes/insufficient scrutiny of assumptions
- Answers to criticisms, however, do provide useful further tests of DV strategy
- Our result stands: $\alpha(m_\tau)=0.3077\pm0.0075 \qquad \text{(Boito \it et al. '21)}$ $\Rightarrow \qquad \alpha(m_Z)=0.1171\pm0.0010$
- Our criticism of the truncated OPE strategy remains unanswered (PRD 95 (2017); PRD 100 (2019))

BACKUP

Redundancy of tOPE strategy

• Consider "optimal weights": (PRS, '16) $w_{21}(y)=1-3y^2+2y^3$ $\alpha_s,\ C_6,\ C_8$ $w_{22}(y)=1-4y^3+3y^4$ $\alpha_s,\ C_8,\ C_{10}$ $w_{23}(y)=1-5y^4+4y^5$ $\alpha_s,\ C_{10},\ C_{12}$ $w_{24}(y)=1-6y^5+5y^6$ $\alpha_s,\ C_{12},\ C_{14}$ $w_{25}(y)=1-7y^6+6y^7$ $\alpha_s,\ C_{14},\ C_{16}$

• Set $C_{12}=C_{14}=C_{16}=0$ and set $s_0=2.8~{
m GeV}^2$, hence $w_{24},~w_{25}$ determine only $\alpha_s(m_{ au}^2)$ (even with correlations), with C_{10} fixed by w_{23} , etc. Fit to ALEPH V+A non-strange data

Redundancy of tOPE strategy

(PRS '22)

Consider "optimal weights": (PRS, '16)

$$w_{21}(y) = 1 - 3y^{2} + 2y^{3}$$

$$w_{22}(y) = 1 - 4y^{3} + 3y^{4}$$

$$w_{23}(y) = 1 - 5y^{4} + 4y^{5}$$

$$w_{24}(y) = 1 - 6y^{5} + 5y^{6}$$

$$w_{25}(y) = 1 - 7y^{6} + 6y^{7}$$

irrelevant

 $egin{array}{lll} lpha_s, & C_6, & C_8 & {
m adds} & C_6 \ lpha_s, & C_8, & C_{10} & {
m adds} & C_8 \ lpha_s, & C_{10} & {
m adds} & C_{10} \ lpha_s \ lpha_s \end{array}
ight\} ext{-fixes} & lpha_s(m_ au^2)$

- Results: w_{24}, w_{25} : $\alpha_s = 0.3146(28), \ \chi^2 = 2.376717$ $w_{23}, \dots w_{25}$: $\alpha_s = 0.3146(28), \ \chi^2 = 2.376717, \ C_{10} = 0.00030(12)$ $w_{22}, \dots w_{25}$: $\alpha_s = 0.3146(28), \ \chi^2 = 2.376717, \ C_{10} = 0.00030(12), \ C_8 = -0.00078(21)$ $w_{21}, \dots w_{25}$: $\alpha_s = 0.3146(28), \ \chi^2 = 2.376717, \ C_{10} = 0.00030(12), \ C_8 = -0.00078(21), \ C_6 = 0.00125(24)$
- $\alpha_s(m_\tau^2)$ purely from perturbation theory, no effect from OPE; OPE coefficients not fitted Can also get $\alpha_s(m_\tau^2)$ from only w_{25} (not a fit!): $\alpha_s=0.3200(44)$ tests only pert.th., not the OPE!