Neutrino Mixing Parameters and Unitarity

Tau Lepton Physics 2023

Shirley Li (UC Irvine)

Figure credit: P. Denton

Year

Establishing Neutrino Mixing Paradigm

Neutrino Oscillations: the Standard Paradigm Normal hierarchy **Inverted hierarchy** $\begin{array}{c} \pi \\ 0 \end{array}$ ν_2 ν_3 Unknown: $\begin{array}{c} \pi \\ 0 \end{array}$ ν_1 $\delta_{\rm CP}$, mass hierarchy $\Delta m_{\rm atm}^2$ A Few %:

 $\theta_{12}, \theta_{13}, \theta_{23},$ $\Delta m_{21}^2, \Delta m_{32}^2$ Δm_{atm}^2 Δm_{sol}^2 ν_2 ν_1 ν_3 π_0

 ν_e

 $\mathbf{\nu}_{\mu}$

 ν_{τ}

Neutrino Oscillations: the Standard Paradigm

Modified from Song *et al.*, 21

Neutrino Oscillations: the Standard Paradigm

Modified from Song et al., 21

Unitarity of Neutrino Mixing

Standard Model: 3 neutrinos

$$\nu_{\alpha}(x) = \sum_{k=1}^{3} U_{\alpha k} \nu_{k}(x)$$
Flavor Mass

3-flavor mixing parameterized by:

$$U_{\rm PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Also Parke, Ross-
Lonergan 16
Denton, Gehrlein 21
$$\frac{1}{2} \frac{1}{2} \frac{1}{$$

Unitarity of Neutrino Mixing

Standard Model: 3 neutrinos

$$\nu_{\alpha}(x) = \sum_{k=1}^{3} U_{\alpha k} \nu_{k}(x)$$
Flavor Mass

3-flavor mixing parameterized by:

Sterile neutrino searches – unitarity assumed

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \end{pmatrix} = \begin{pmatrix} 1 & & & & \\ & 1 & & \\ & & c_{34} & s_{34} \\ & & & -s_{34} & c_{34} \end{pmatrix} \begin{pmatrix} 1 & & & & & \\ & c_{24} & & s_{24}e^{-i\delta 2} \\ & & 1 & & \\ & & -s_{24}e^{i\delta 2} & & c_{24} \end{pmatrix} \begin{pmatrix} c_{14} & & & s_{14} \\ & 1 & & \\ & & 1 & & \\ -s_{14} & & & c_{14} \end{pmatrix} U_{\text{PMNS}}$$

This Isn't the Whole Story...

Neutrinos have masses

$$L \supset c_{\nu} \frac{LHLH}{\Lambda} + \text{h.c.}$$

New physics at scale $\Lambda =>$ new states =>

 $(3\times3) U_{\alpha k} \to (n\times n) \mathcal{U}_{\alpha k}$

E.g., non-standard interactions

$$L = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \epsilon^{f,P}_{\alpha,\beta} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf')$$

can be mapped onto non-unitarity Blennow *et al.*, 06

How well can we test non-unitarity in neutrino sector?

This Isn't the Whole Story...

:andard interactions

$$\int_{\alpha,\beta} \epsilon^{f,P}_{\alpha,\beta} (\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta})(\bar{f}\gamma_{\mu}Pf')$$

ed onto non-unitarity Blennow *et al.,* 06

How well can we test non-unitarity in neutrino sector?

What Is Unitarity?

 $U^{\dagger}U = UU^{\dagger} = \mathbb{I}$

An over-complete set of constraints:

$$N_{\alpha} \equiv \sum_{k=1}^{3} |U_{\alpha k}|^{2} = 1$$

$$t_{\alpha \beta} \equiv \sum_{k=1}^{3} U_{\alpha k} U_{\beta k}^{*} = 0$$

$$N_{k} \equiv \sum_{\alpha=e,\mu,\tau} |U_{\alpha k}|^{2} = 1$$

$$t_{kl} \equiv \sum_{\alpha=e,\mu,\tau} U_{\alpha k} U_{\alpha l}^{*} = 0$$

Row/column normalizations

closures

How Can We Test Normalizations?

Assuming unitarity, infinite precision

Ellis, Kelly, SL 2020a

All measurements should cross the same point

How Well Can We Test Normalizations?

Ellis, Kelly, SL 20a

$$\theta_{13} - \theta_{12}$$
 plane

Current precisions

Future sensitivities

DUNE solar: Capozzi et al., 18

10/18

How Well Can We Test Normalizations?

Ellis, Kelly, SL 20a

$$\theta_{23} - \theta_{13}$$
 plane

Current precisions

How Well Can We Test Normalizations?

Ellis, Kelly, SL 20a

 $\theta_{23} - \theta_{13}$ plane

How Can We Test Closures?

How Well Can We Test Closures?

Ellis, Kelly, SL 20b

Currently no sensitivity to CPV

Future:

Appearance vs. disappearance
 Only one measurement of δ_{CP}

All Six Unitarity Triangles

Ellis, Kelly, SL 20b

15/18

Triangles as Tests of Unitarity

Ellis, Kelly, SL 20b

Injected non-unitarity

 $U_{e1}U_{\mu1}^* + U_{e2}U_{\mu2}^* + U_{e3}U_{\mu3}^* = 0.01 + 0.04i$

No tension in standard approach

Advocating for experiments to separately analyze appearance and disappearance Data

How Well Can We Test Closures?

Ellis, Kelly, SL 20a

	Current 3σ Upper Limit	Future 3σ Upper Limit
$ t_{e\mu} $	$3.2 imes 10^{-2}$	$2.5 imes 10^{-2}$
$ t_{e\tau} $	$1.3 imes 10^{-1}$	No Improvement
$ t_{\mu au} $	$1.6 imes10^{-2}$	No Improvement
$ t_{12} $	$2.5 imes 10^{-1}$	$1.0 imes 10^{-1}$
$ t_{13} $	$3.2 imes10^{-1}$	$1.2 imes 10^{-1}$
$ t_{23} $	$3.3 imes10^{-1}$	$1.1 imes 10^{-1}$
$ t_{23} $	$3.3 imes 10^{-1}$	$1.1 imes 10^{-1}$
t_{13}	$3.2 imes 10^{-1}$	$1.2 imes 10^{-1}$

A factor of 1—3 improvement but need better tau data!

Conclusions

- In oscillation analysis, unitarity of PMNS matrix is typically assumed
- > New physics could show up as unitarity violation
- > Standard analysis may not be sensitive to this
- → We need more tau data, and different measurements of δ_{CP}