

Global Analysis of Lepton Flavor Violating Operators

Emanuele Mereghetti

The 17th International Workshop on Tau Lepton Physics December 8^{th} , 2023, Louisville.

Charged lepton flavor violation

- mismatch between quark weak and mass eigenstates \implies quark family number is not conserved \checkmark visible in several rare $\Delta F = 1$ and $\Delta F = 2$ processes
- in minimal SM with massless neutrinos, no such mismatch

lepton family (LF) is exactly conserved

Charged lepton flavor violation

- mismatch between quark weak and mass eigenstates \implies quark family number is not conserved \checkmark visible in several rare $\Delta F = 1$ and $\Delta F = 2$ processes
- in minimal SM with massless neutrinos, no such mismatch

lepton family (LF) is exactly conserved

but neutrino have masses!

- LF is broken in neutrino sector
- charged LFV highly suppressed by GIM mechanism

$${
m BR} \sim \left(rac{m_{
u}}{m_W}
ight)^4 \sim 10^{-44}$$

S. Petcov, '77; W. Marciano and A. Sanda, '77

Charged lepton flavor violation

- ... however, models that explain $m_{
 u}$ usually introduce new CLFV at tree or loop level
- e.g. type I, II and III see-saw A. Abada, C. Biggio, F. Bonnet, M. B. Gavela, T. Hambye, '08
- and a variety of models from leptoquarks, to Z', to SUSY
- CLFV experiments crucial to falsify TeV origin of m_{ν}

CLFV at low- and high-energy

1. μ, τ and meson decays $\mu \to e\gamma, \mu \to 3e, \tau \to \ell\gamma, \tau \to \ell\pi\pi, \tau \to \ell K\pi, B \to \pi\tau\ell, \ldots$ 2. pp collisions $pp \to \ell\ell', h \to \ell\ell', t \to q\tau e \ldots$ 3. ep collisionsat HERA and the upcoming EIC

see talks by W. Altmannshofer, M. Ardu, I. Bigaran, J. Heeck, S. Mantry, A. Petrov, ...

The Standard Model Effective Field Theory

Study CLFV at EIC within EFT framework

- SM fields, no new light degrees of freedom (but easy to add new particles, e.g. ν_R)
- local $SU(3)_c \times SU(2)_L \times U(1)_Y$ invariance
- organize them in a power counting based on canonical dimension

1. no CLFV at dim. 4 2. GIM suppression at dim. 5, BR $\sim (m_{\nu}/m_W)^4$

SMEFT for CLFV

1. LFV Z couplings, & γ , Z dipole and Yukawa couplings

$$\mathcal{L} = -\frac{g}{2c_{w}}Z_{\mu}\left[\left(c_{L\varphi}^{(1)} + c_{L\varphi}^{(1)}\right)_{\tau e}\bar{\tau}_{L}\gamma^{\mu}e_{L} + c_{e\varphi}\bar{\tau}_{R}\gamma^{\mu}e_{R}\right] - \frac{e}{2v}\left[\Gamma_{\gamma}^{e}\right]_{\tau e}\bar{\tau}_{L}\sigma^{\mu\nu}e_{R}F_{\mu\nu} - \left[Y_{e}'\right]_{\tau e}h\bar{\tau}_{L}e_{R} + \text{h.c.}$$

$$\mathcal{C} = \mathcal{O}\left(\frac{v^{2}}{\Lambda^{2}}\right)$$

SMEFT for CLFV

- 1. LFV Z couplings, & γ , Z dipole and Yukawa couplings
- 2. leptonic and semileptonic interactions

7 Vector/Axial:
$$C_{L,Q}^{(1,3)}$$
, C_{eu} , C_{ed} , C_{Lu} , C_{Ld} , C_{Qe}
3 Scalar/Tensor: C_{LedQ} , $C_{LeQu}^{(1,3)}$
3 purely leptonic: C_{LL} , C_{ee} , C_{Le}

• assume generic quark flavor structures (> 120 indep. $au \leftrightarrow e$ couplings)

$$\begin{bmatrix} C_{Ld} \end{bmatrix}_{\tau e} = \begin{pmatrix} \begin{bmatrix} C_{Ld} \end{bmatrix}_{dd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{ds} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{db} \\ \begin{bmatrix} C_{Ld} \end{bmatrix}_{sd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{ss} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{sb} \\ \begin{bmatrix} C_{Ld} \end{bmatrix}_{bd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{bs} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{bb} \end{pmatrix}$$

Connecting observables at different scales

- for μ and τ decays, $\mu \to e$ conversion, integrate heavy particles out
- end up with dipole, leptonic and semileptonic ops. with *u*, *d* and *s* quarks, gluonic ops.

$$\mathcal{L} = -\frac{e}{2v}\bar{e}_{L}^{\rho}[\Gamma]_{\rho r}\sigma^{\mu\nu}e_{R}^{r}F_{\mu\nu} - \frac{4G_{F}}{\sqrt{2}}L_{\rho rst}^{\Gamma}\bar{e}^{\rho}\Gamma e^{r} \ \bar{e}^{s}\Gamma e^{t} - \frac{4G_{F}}{\sqrt{2}}C_{\rho rst}^{\Gamma}\bar{e}^{\rho}\Gamma e^{r} \ \bar{q}^{s}\Gamma q^{t} + \frac{\alpha_{s}}{4\pi v^{3}}GG\bar{e}^{\rho}[C_{GG}]_{\rho r} e^{r} + \dots$$

Connecting observables at different scales

- Z couplings, photon dipoles and light-quark 4-fermion operators \Longrightarrow tree level matching \checkmark
- Z dipole & Higgs coupling run and match onto γ dipole at one or two loops \checkmark

$$\left[\Gamma_{\gamma}^{e}\right]_{\tau e}\left(\mu=2\,\text{GeV}\right) = \left(\left[\Gamma_{\gamma}^{e}\right]_{\tau e}-2.0\cdot10^{-2}\left[\Gamma_{Z}^{e}\right]_{\tau e}-6.0\cdot10^{-5}\left(Y'\right)_{\tau e}\right)\left(\mu=1\,\text{TeV}\right)$$

Connecting observables at different scales

- Z couplings, photon dipoles and light-quark 4-fermion operators \Longrightarrow tree level matching \checkmark
- Z dipole & Higgs coupling run and match onto γ dipole at one or two loops \checkmark

$$\left[\Gamma_{\gamma}^{e}\right]_{\tau e}\left(\mu=2\,\text{GeV}\right) = \left(\left[\Gamma_{\gamma}^{e}\right]_{\tau e}-2.0\cdot10^{-2}\left[\Gamma_{Z}^{e}\right]_{\tau e}-6.0\cdot10^{-5}\left(Y'\right)_{\tau e}\right)(\mu=1\,\text{TeV}).$$

• vector/axial t operators, vector b and c operators run into light quark ops. via penguins \checkmark $C_{VLV}^{eu}(\mu = 2 \text{ GeV}) = (-10[C_{LQ,U} - C_{Lu}]_{tt} - 2.0[C_{LQ,U} + C_{Lu}]_{tt} + 3.0[C_{LQ,D} + C_{Ld}]_{bb} - 6.8[C_{LQ,U} + C_{Lu}]_{cc}) \cdot 10^{-3}$ $C_{VLA}^{eu}(\mu = 2 \text{ GeV}) = (-27[C_{LQ,U} - C_{Lu}]_{tt}) \cdot 10^{-3}$

 \times very suppressed contribs. from axial b and c ops

• scalar/tensor operators run into dipole and match onto dim-7 glue ops.

Constraints on $\tau \rightarrow e$ transitions

Decay mode	V	A	S	P	T
	$q^{(0)} q^{(1)} s c b$	$q^{(0)}q^{(1)} s c b$	$q^{(0)} q^{(1)} s c b$	$q^{(0)} q^{(1)} s c b$	uс
$\tau \rightarrow e\gamma$					\checkmark
$\tau \rightarrow e \ell^+ \ell^-$	\checkmark				
$ au ightarrow e\pi^0$		\checkmark			
$ \tau \rightarrow e\eta, \eta' $		\checkmark		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$	
$ \tau \rightarrow e \pi^+ \pi^-$	\checkmark \checkmark \checkmark		\checkmark \checkmark \checkmark		\checkmark
$\tau \rightarrow eK^+K^-$	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$		\checkmark
	ds db sb cu	ds db sb cu	ds db sb cu	ds db sb cu	си
$\tau \rightarrow eK_S^0$		\checkmark		\checkmark	
$ \tau^- \rightarrow e^- K \pi $	\checkmark		\checkmark		
$B^0 \rightarrow e \tau$		\checkmark		\checkmark	
$B^+ \rightarrow \pi^+ e \tau$	\checkmark		\checkmark		
$B^+ ightarrow K^+ e au$	\checkmark		\checkmark		

 \checkmark = tree \checkmark = loop

- τ branching ratios in the $\sim 10^{-7} \text{--} 10^{-8}$ range
- non-perturbative input mostly under control (some model dep. in K^+K^-)

A. Celis, V. Cirigliano, E. Passemar, '14, V. Cirigliano, A. Crivellin, M. Hoferichter, '18
 E. Passemar private comm., K. Beloborodov, V. Druzhinin, S. Serednyakov, '19

- B branching ratios $\sim 10^{-5}$
- f_{B} , $f_{+,0}(B
 ightarrow \pi, K)$ well determined from LQCD

 \checkmark = tree \checkmark = loop

1. uu, dd, ss components of all Dirac structures well constrained by multiple channels

• V isoscalar uu + dd gives small and uncertain contrib. to au o eKK

- 2. bb, cc vectors run into light quark V via penguins
- *bb*, *cc* S, P match onto dim 7 gluonic operators
- no constraints on axial *cc* or *bb* components

 \checkmark = tree \checkmark = loop

need $\eta_c \rightarrow e\tau$, $\eta_b \rightarrow e\tau$!

 \checkmark = tree \checkmark = loop

- 3. strong constraints on ds, sd from $\tau \rightarrow eK$, $\tau \rightarrow eK\pi$
- and on vector/scalar bd, bs $(B \rightarrow P \tau e)$ and axial/pseudoscalar bd $(B \rightarrow \tau e)$ components
- no constraints on *cu*, axial and pseudoscalar *sb*, *bs*,

 $B_s
ightarrow e au$ at Belle II and LHCb D
ightarrow e au at LHCb and BESIII

Z, Higgs and top decays

• $Z \rightarrow \tau e$ studied at LEP and LHC, LHC giving strongest bounds

$$ext{BR}(Z
ightarrow e au) < 5.0 \cdot 10^{-6} \Longrightarrow \left| c_{L\varphi}^{(1)} + c_{L\varphi}^{(3)} \right| < 7.8 \cdot 10^{-3}$$

• limit on $H \rightarrow \tau e$ from LHC

$$\mathrm{BR}(H_0 \to e\tau) < 2.0 \cdot 10^{-3} \Longrightarrow \left| Y_{e\tau, \tau e}' \right| < 1.3 \cdot 10^{-3}$$

• ATLAS looked for $t
ightarrow q\ell\ell'$, $C \sim 0.1$ bounds

High invariant mass CLFV Drell-Yan

- ATLAS published $pp \rightarrow \tau e$ results, with hadronic τ , framed as Z' searches 6 invariant mass bins from 100 GeV to 3 TeV, compatible with background only
- if $\Lambda\gtrsim 3-4$ TeV, can be reframed as constraints on four-fermion operators as at low-energy
- simulate SMEFT operators at NLO in QCD, with POWHEG + Pythia8 + Delphes

High invariant mass CLFV Drell-Yan

- no SM background at large $m_{ au e}$,
- signal from four-fermion enhanced at large $m_{\tau e}$, indep. of Lorentz structure
- $C_{ au eq_i q_j} \lesssim 10^{-3}$ for valence quarks, $\lesssim 3 \cdot 10^{-2}$ for b quarks
- new '23 ATLAS and CMS analysis with full luminosity and better backgrounds

CLFV Deep Inelastic Scattering

Left handed τ_L , e_L Left handed u_L , d_L NNPDF31_lo_as_0118

- most cross sections in the 1-10 pb range, for $\Lambda = v$,
- heavy flavors c, b suppressed by factor ten
- large PDF uncertainties for heavy-flavor-initiated processes (NLO QCD corrections will be important)

τ at the EIC

- (substantial) background from standard NC and CC DIS
- simulate SM & SMEFT events with Pythia8 + Delphes for EIC

thanks to Miguel Arratia (UCR)!

Muon channel

• μ and hadronic channels are the most promising

see S. Mantry's talk

- in SM, μ come from hadron decays, typically at small p_T
- moderate cuts on muon and jet p_T eliminate all SM background
- smaller signal efficiency for Z couplings, heavy quarks

A global look to $\tau~{\rm CLFV}$

A global look to $\tau \leftrightarrow e$ transitions: dipole, Yukawa and Z

V. Cirigliano, K. Fuyuto , C. Lee, EM, B. Yan, '21

- γ and Z overwhelming constrained by $\tau \rightarrow e\gamma$
- strong direct LHC bound on Y'
- $\tau \rightarrow e\pi\pi$ dominates Z couplings

A global look to $\tau \leftrightarrow e$ transitions: four-fermion operators

- uu $\tau
 ightarrow e\pi\pi$ stronger by \sim 3, LHC and EIC competitive with $\tau
 ightarrow e\pi$
- cc low-energy loop suppressed, LHC and EIC can do better
- tt surprisingly strong constraints from au decays
- colliders are only probes of u-type off-diagonal

A global look to $\tau \leftrightarrow e$ transitions: four-fermion operators

- LHC/EIC very competitive on bb component
- and with B decays
- similar conclusions for scalar/tensor operators

$\tau\leftrightarrow e$ transitions: future projections

- Belle-II will push CLFV scale to $\Lambda \gtrsim 30$ TeV $(\tau \rightarrow e\pi\pi)$ or $\Lambda \gtrsim 300$ TeV $(\tau \rightarrow e\gamma)$
- colliders will play an important role in heavy flavor & multi-coupling scenarios

Towards a global fit

- turn on all V/A couplings to L leptons & d-type quarks
- contributions to hadronic au decays cancel for $[C_{Ld}]_{bb} \sim -[C_{LQD}]_{bb}$
- $\tau
 ightarrow e \ell^+ \ell^-$ weaker than current LHC and project EIC
- need collider or η_b decays

$\tau \leftrightarrow \mu$ transitions

- very similar discussion for $\mu \rightarrow \tau$ transitions
- abundance of flavor-conserving and flavor-changing channels

 strong constraints on light-quark
 operators
 - heavy flavors and interplay with LHC to be studied

T. Husek, K. Monsalvez-Pozo, J. Portoles '20

Conclusion

- CLFV can unveil/constrain mechanisms of neutrino mass generation
- B factories, LHC and future e-p colliders are complementary especially for heavy flavors and in multiple-coupling scenarios

To do:

- improve EIC calculations and simulations, detailed study of heavy quark channels, improve efficiency with b tagging, study $e \leftrightarrow \mu$ transitions, ...
- recast ATLAS and CMS analyses in SMEFT language (alongside to benchmark models)
- perform a real global fit & identify unconstrained direction in $e \leftrightarrow \mu$, $e \leftrightarrow \tau$ and $\mu \leftrightarrow \tau$ interactions
- extend SMEFT studies to include light sterile neutrinos