The Euclidean Adler function and its interplay with low-energy data and α_s

Antonio Rodríguez Sánchez

TAU2023, Louisville 06/12/2023

In collaboration with Micher Davier, David Díaz Calderón, Bogdan Malaescu, Antonio Pich, and Zhiqing Zhang

(日) (四) (日) (日) (日)

JHEP 04 (2023) 067

The Euclidean Adler function, $D(Q^2)$

 Two point correlation functions of neutral guark current $\Pi_{ij}^{\mu\nu}(q) \equiv i \int d^4x \, e^{-iqx} \langle 0|T\left(\bar{q}_i(x)\gamma^{\mu}q_i(x)\,\bar{q}_j(0)\gamma^{\nu}q_j(0)\right) |0\rangle \,. \qquad \Pi_{ij}(q) \sim \underbrace{\overset{q}{\longrightarrow}}_{q_i} (q) = \int_{q_i} d^4x \, e^{-iqx} \langle 0|T\left(\bar{q}_i(x)\gamma^{\mu}q_i(x)\,\bar{q}_j(0)\gamma^{\nu}q_j(0)\right) |0\rangle \,.$

イロン イボン イヨン イヨン 三日

• Asymptotic limit, $Q^2 = -q^2 \gg \Lambda_{\rm OCD}$

$$\Pi_{ij}^{\mathrm{part}}(Q^2) \sim rac{N_C}{\pi^2} \delta_{ij} \left[\log(Q^2) + C_{\mathrm{subs}}
ight]
ightarrow D_{ij}(Q^2) \sim \pi^2 Q^2 rac{d\Pi_{ij}(Q)}{dQ^2} \sim N_C \delta_{ij}$$

- Separation from the asymptotic regime given by $\delta D_{ii} \sim N_C \delta_{ii} \alpha_s(Q^2)$
- Perturbative QCD (pQCD) breaks down at low Q. $D_{ii}(Q^2 \rightarrow 0) = 0$
- EM Adler function is simply given by $D_{\rm EM} = \sum_{i,i} Q_i Q_j D_{ij}$

Interplay with $\alpha_{\rm QED}$ and low-energy data

- Precise lattice data results at low Q BMW, Nature 593 (2021) 51. Mainz, JHEP 08 (2022)
 220. Driven by muon g-2 program
- Connection to experimental data (optical theorem)

$$R(q^2) \sim q^2 \sigma(e^+e^- \rightarrow \mathrm{hadrons}) \sim \mathrm{Im}\Pi(q^2)$$

Interplay with $\alpha_{\rm QED}$ and low-energy data.

$$W(Q^2;Q_1^2,Q_2^2)=rac{1}{(Q^2-Q_1^2)(Q^2-Q_2^2)}$$

イロト イヨト イヨト イヨト

$$\begin{aligned} \frac{1}{2\pi i} \oint_{|Q^2|=Q_0^2} dQ^2 \frac{\Pi_{ij}(Q^2)}{(Q^2-Q_1^2)(Q^2-Q_2^2)} + \frac{1}{2\pi i} \left(\int_{|Q_{th}^2|e^{-i\pi}}^{|Q_0^2|e^{-i\pi}} - \int_{|Q_{th}^2|e^{i\pi}}^{|Q_0^2|e^{i\pi}} \right) dQ^2 \frac{\Pi_{ij}(Q^2)}{(Q^2-Q_1^2)(Q^2-Q_2^2)} \\ &= \frac{\Pi_{ij}(Q_2^2)}{Q_2^2-Q_1^2} + \frac{\Pi_{ij}(Q_1^2)}{Q_1^2-Q_2^2} \end{aligned}$$

$$\Delta \alpha_{\rm had}(Q^2) = \frac{\alpha Q^2}{3\pi} \int_{s_{th}}^{\infty} ds \, \frac{R(s)}{s(s+Q^2)} \qquad D(Q^2) \sim Q^2 \int_{s_{th}}^{\infty} ds \frac{R(s)}{(s+Q^2)^2}$$

2

pQCD EM Adler function: state-of-art and approach

- Previous assessments of $D_{\rm EM}$ made in MOM scheme hep-ph/9812521, CERN Yellow Reports: Monographs 3 (2020) 9
- Decoupling scheme, but less known perturbative expansion (up to α_s^2). Ill-defined pole masses as inputs.
- In the limit of n_f massless quarks, D_{ii} known in the $\overline{\mathrm{MS}}$ at 5 loops.
- $m_{u,d} \ll m_s \ll \Lambda_{
 m QCD} \ll m_c \ll m_b \ll m_t$. Interested in $Q < 2m_c$
- Improved precision if instead one starts from $n_f = 3$ massless and systematically adds expansions in $\frac{Q^2}{(2m_r)^2}$. Inputs from FLAG
- Study the different two-point functions separately $D_{\rm EM} = \sum_{i,j} Q_i Q_j D_{ij}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

pQCD Adler function. Light quarks, massless

$$D_{ii}^{L,(0)}(Q^{2}) = N_{C} \left\{ 1 + \sum_{n=1}^{n-1} \sum_{p=0}^{n-1} K_{n,p} \left(\frac{\alpha_{s}(\mu^{2})}{\pi} \right)^{n} \log^{p} (Q^{2}/\mu^{2}) \right\} ,$$

All coefficients known up to (and including) $K_{4,n}$

				$D_{ii}^{L,(0)}(Q^2)$						
$\alpha_s^{(n_f=5)}(M_Z^2)$	Q	$\alpha_s(Q^2)$	0	1	2	3	4	5		
0.115	1.0	0.4227	3	3.4036	3.4927	3.5392	3.5874	3.6238		
	1.5	0.3197	3	3.3053	3.3562	3.3764	3.3921	3.4011		
	2.0	0.2751	3	3.2627	3.3005	3.3133	3.3219	3.3262		
0.120	1.0	0.5277	3	3.5039	3.6427	3.7332	3.8504	3.9606		
	1.5	0.3681	3	3.3515	3.4191	3.4498	3.4776	3.4958		
	2.0	0.3085	3	3.2946	3.3420	3.3601	3.3738	3.3813		

Strange mass corrections also known (tiny, slow convergence)

$$\Delta_{m_s} D_{33}^L(Q^2) = -3N_C \frac{m_s^2(Q^2)}{Q^2} \sum_n (2c_n^{L+T} + e_n^{L+T} + f_n^{L+T}) \left(\frac{\alpha_s(Q^2)}{\pi}\right)^n + \mathcal{O}\left(\frac{m_s^4}{Q^4}\right)$$

pQCD Adler function. Light quarks. Charm corrections

- Heavy quark loops inside light quarks correlators induce corrections suppressed by $\sim \alpha_s^2 \frac{Q^2}{(2m_r)^2}$
- Reconstructed from analyticity and known contribution on δR_q Phys.Lett.B 338 (1994) 330-335

0.00

$$D_{ii}^{L,m_{c}}(Q^{2}) = Q^{2} \int_{s_{th}}^{\infty} ds \frac{\delta R_{q}(s)}{(s+Q^{2})^{2}}$$

$$= N_{C} C_{F} T_{F} Q^{2} \left(\int_{0}^{4m_{c}^{2}} ds \frac{\rho_{V}(s)}{(s+Q^{2})^{2}} + \int_{4m_{c}^{2}}^{\infty} ds \frac{\rho_{R}(s) + \rho_{V}(s)}{(s+Q^{2})^{2}} \right) \left(\frac{\alpha_{s}(\mu^{2})}{\pi} \right)^{2}$$

$$= \frac{0.012}{0.01} \int_{\frac{Q}{2}}^{0} \frac{0.012}{0.004} \int_{0.002}^{0} \frac{1}{12} \int_{0}^{2} \frac{1}{3} \int_{0}^{2} \frac{1}{12} \int_{0}^{2} \frac{1}{3} \int_{0}^{2} \frac{1}{2} \int_{0}^{2} \frac{1}{12} \int_{0}^{2} \frac{1}{3} \int_{0}^{2} \frac{1}{2} \int_{0}$$

1

pQCD Adler function. Heavy quarks. Charm corrections

$$D_{ii}(Q^2) = -rac{9}{4} \, \sum_j \, (-1)^j \, j \, \overline{C}_j(\mu) \left(rac{Q^2}{4 m_i^2(\mu^2)}
ight)^j$$

Excellent knowledge of coefficients thanks to cumulative efforts of many works ($\sim \mathcal{L}_{\rm EFT}^{D=60}$ up to 4 loops!)

$$\begin{split} D(Q^2) &= \sum_{i,j} Q_i Q_j D_{ij}(Q^2) = \frac{2}{3} D_{ii}^{L,(0)}(Q^2) + \frac{1}{9} \Delta_{m_s} D_{33}^L(Q^2) + \frac{2}{3} D_{ii}^{L,m_c}(Q^2) \\ &+ \frac{4}{9} D_{cc}(Q^2) + \frac{4}{9} D_{cc}^s(Q^2) + \frac{1}{9} D_{bb}(Q^2) + \Delta D_{\text{QED}}(Q^2) \end{split}$$

$\alpha_s^{(n_f=5)}(M_Z^2)$	Q^2	$\frac{2}{3}D_{ii}^{L,(0)}$	$\frac{1}{9}\Delta_{m_s}D_{33}^L$	$\frac{2}{3}D_{ii}^{L,m_c}$	$\frac{4}{9}D_{cc}$	$\frac{4}{9}D_{cc}^{s}$	$\frac{1}{9}D_{bb}$	$\Delta D_{ m QED}$	D
0.115	3	2.2395(77)	-0.0123(12)	0.0039(10)	0.4484(21)(24)	0.0000(00)	0.0130(01)	0.0012(04)	2.694(09)
	4	2.2175(52)	-0.0080(07)	0.0045(12)	0.5435(24)(26)	0.0000(01)	0.0171(02)	0.0012(04)	2.776(07)
	5	2.2033(39)	-0.0058(04)	0.0050(13)	0.6197(31)(26)	0.0001(03)	0.0212(02)	0.0012(04)	2.845(06)
0.120	3	2.2866(156)	-0.0141(17)	0.0053(21)	0.4649(47)(24)	0.0000(01)	0.0132(01)	0.0012(04)	2.757(17)
	4	2.2542(98)	-0.0089(09)	0.0062(24)	0.5629(53)(26)	0.0001(02)	0.0174(02)	0.0012(04)	2.833(12)
	5	2.2343(70)	-0.0063(06)	0.0069(26)	0.6429(65)(27)	0.0002(05)	0.0215(02)	0.0012(04)	2.900(11)
0.1184(8)	3	2.2699(124)	-0.0134(15)	0.0048(17)	0.4591(36)(24)	0.0000(01)	0.0131(01)	0.0012(04)	2.735(17)
	4	2.2414(79)	-0.0086(08)	0.0055(19)	0.5561(41)(26)	0.0001(02)	0.0173(02)	0.0012(04)	2.813(14)
	5	2.2236(58)	-0.0061(05)	0.0062(20)	0.6348(51)(27)	0.0002(04)	0.0214(02)	0.0012(04)	2.881(13)

2

pQCD Adler function. Results

Antonio Rodríguez Sánchez

10 / 16

Experimental input for the EM Adler function

$$\Delta \alpha_{\rm had}(Q^2) = \frac{\alpha Q^2}{3\pi} \int_{s_{th}}^{\infty} ds \, \frac{R(s)}{s(s+Q^2)}$$

イロト イヨト イヨト イヨト

æ

Alternative evaluations of the EM Adler function

 $Q^2(\text{GeV}^2)$

・ 何 ト ・ ヨ ト ・ ヨ ト

- Lattice curve above e^-e^+ data one, but with small significance.
- pQCD curve in good agreement with lattice but in tension with e^+e^- data

EM Adler function: estimates of power corrections

- Non-perturbative corrections scaling as $\Lambda_{\rm QCD}^4/\mathit{Q}^4.$ Existence well established beyond pQCD
- Hard to separate from pQCD series (partially in pQCD uncertainties)
- Estimate based on limited knowledge

$$\delta D_{
m em}^{L,D=4} pprox rac{(0.10 \pm 0.18)\,{
m GeV}^4}{Q^4} + rac{-(0.36 \pm 0.36)\,{
m GeV}^6}{Q^6}$$

- They only become subleading source of uncertainties from $Q\gtrsim 2\,{
m GeVs}$

It may explain low-energy tension, but harder at high energies

EM Adler function: sensitivity to α_s

Different fitting strategies analysed Fit to DHMZ compilation: $\alpha_s^{(n_f=5)}(M_Z^2) = 0.1136 \pm 0.0025$

Larger central value is lattice is used, $lpha_s^{(n_f=5)}(M_Z^2)=0.1179\pm0.0025$

RGE could be tested, but more data at large s is needed

Conclusions

- Comprehensive study of the perturbative EM Adler function at $\mathcal{O}(2\,{\rm GeV})$
- Implementation within $\overline{\text{MS}}$ overcomes full-scheme limitations
- Comparison with e^+e^- and lattice data provides interesting insights

- Potential $\sim 1\%$ level $\alpha_s(M_Z)$ from data-based Euclidean Adler function
- Very important interplay to extract precise value of $\alpha_{\rm EM}(M_Z)$
- $\bullet\,$ Important to extend this approach to higher energies and test regime of validity of pQCD/lattice for the different correlators