

Status and Prospects of the JUNO Experiment

Matthias Raphael Stock on behalf of the JUNO Collaboration

The 17th International Workshop on Tau Lepton Physics (TAU2023), Louisville, 12/07/2023

Technical University of Munich TUM School of Natural Sciences Physics Department

Jiangmen Underground Neutrino Observatory

- Multi-purpose experiment currently under construction in South China
- Main goal is the determination of the neutrino mass ordering at 3 σ after 6 years data taking by measuring the oscillated electron antineutrino energy spectrum from nuclear reactors

JUNO

L/E [km/MeV]

Starting Starting Yangjiang

 $\Delta m^2_{\rm atm}$

 $\Delta m_{\rm sol}^2$

Normal ordering

 ν_{τ}

Nuclear Power Plant 17.4 GW_{th}

 ν_3

 ν_2

 ν_1

 $\Delta m_{\rm sol}^2$

 $\Delta m^2_{\rm atm}$

 ν_{μ}

 ν_2

 ν_1

 m^2

 ν_3

 ν_e

Inverted ordering

564 m vertical tunnel

1266 m slope tunnel with 42.5 %slope 700 m depth 1,800 meter water equivalent

Civil construction finished in December 2021

House and the second second

Photo taken in February 2023

Overview of the JUNO Detector

Central Detector

 20,000 tons of liquid scintillator (LS) in 35.4 m in diameter acrylic sphere, largest in the world

Unprecedented energy resolution of 3 % at 1 MeV:

- High light yield of LS:
 ~ 10,000 photons per MeV expected
- High transparency of LS:
 ~ 20 m attenuation length at 430 nm
- High photocoverage of ~ 78 %: 17,612 large PMTs (20-inch) and 25,600 small PMTs (3-inch)

Water Cherenkov Detector

- 35,000 tons of ultra-pure water in cylinder of 43.5 m in diameter and 44 m in height
- 2,400 large PMTs (20-inch)
- Veto and shielding surrounding radioactivity

700 m depth to detector center1,800 meter water equivalent0.004 Hz/m² muon flux

Top Tracker

Combined with CD or WCD, well reconstructed muon sample with > 99 % purity → used to calibrate & tune algorithms to improve reconstruction algorithms for CD and WCD of atmospheric muons & veto affected regions

JUNO is a multi-purpose observatory with a broad physics program.

Reactor neutrinos \sim 45 IBDs per day

Geoneutrinos few IBDs per day

Solar neutrinos ⁸B ~ 50 per day ⁷Be ~ 10^4 per day CNO ~ 10^3 per day

Supernova neutrinos ~ 10⁴ for CCSN at 10 kpc

Diffuse supernova neutrinos ~ 2 to 4 IBDs per year

proton decay, dark matter, sterile neutrinos, nucleon decay ...

12/07/2023

List of Members of the JUNO Collaboration

	Country	Institute	Country	Institute	Country	Institute	
Ī	Armenia	Yerevan Physics Institute	China	SYSU	Germany	U. Mainz	
Γ	Belgium	Université libre de Bruxelles		Tsinghua U.		U. Tübingen	
Γ	Brazil	PUC		UCAS	Italy	INFN Catania	
	-5	UEL	a a a a a a a a a a a a a a a a a a a	USTC	5-	INFN di Frascati	往门中微子实验第22次国际合作组会
	Chile	PCUC		U. of South China		INFN-Ferrara	The 22 rd JUNO Collaboration Meeting
		SAPHIR		Wu Yi U.		INFN-Milano	
		UNAB		Wuhan U.		INFN-Milano Bicocca	
Γ	China	BISEE		Xi'an JT U.	and and h	INFN-Padova	
		Beijing Normal University		Xiamen University		INFN-Perugia	
		CAGS		Zhengzhou U.	5252	INFN-Roma 3	71 institutos
		Chongqing University		NUDT	Latvia	IECS	
		CIAE		CUG-Beijing	Pakistan	PINSTECH (PAEC)	in 17 countries/regions
		DGUT		ECUT-Nanchang City	Russia	INR Moscow	~700 collaborators
		Guangxi University		CDUT-Chengdu		JINR	
		Harbin Institute of Technology	Czech	Charles University		MSU	
		IHEP	Finland	University of Jyvaskyla	Slovakia	FMPICU	
		Jilin U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.	
		Jinan U.		LP2i Bordeaux		National Taiwan U.	
		Nanjing U.		CPPM Marseille		National United U.	
		Nankai U.		IPHC Strasbourg	Thailand	NARIT	
		NCEPU		Subatech Nantes		PPRLCU	
		Peking U.	Germany	RWTH Aachen U.		SUT	
		Shandong U. 🛛 🐴 🖕		TUM	U.K.	U. Warwick	
		Shanghai JT U. 🛛 📐 🕋		U. Hamburg	USA	UMD-G	
		IGG-Beijing		FZJ-IKP		UC Irvine	

+ Observers: University of Liverpool

Detector Design and Status

January 2022

June 2022

Lifting platform

August 2022

Stainless Steel Supporting Structure fully assembled (sub-cm precision)

Acrylic vessel bonding from top to bottom transparency > 96 % in pure water December 2022

July 2023

July 2023

Acrylic sphere inner diameter is (35.40 ± 0.04) mm thickness is (124 ± 4) mm radiopurity of ²³⁸U / ²⁸²Th / ⁴⁰K < 1 ppt

Ongoing PMT installation of CD and WCD

Acrylic sphere installed down to equator

Large Photomultiplier Tubes

Performance testing of more than 20,000 PMTs concerning gain-voltage dependency, dark count rate, peak-to-valley, timing characteristics, pre-/afterpulses...

 5,000 x 20-inch dynode PMTs from Hamamatsu, Japan Mass testing and characterization of 20-inch PMTs for JUNO <u>Eur. Phys. J. C 82, 1168 (</u>2022)

 12,612 x 20-inch Micro-channel plate (MCP) PMTs for CD and 2,400 MCP-PMTs for WCD from North Night Vision Technology (NNVT), China Synergetic 20-inch and 3-inch PMT systems to ensure energy resolution and charge linearity

Acrylic cover

Stainless Steel cover

Clearance between PMTs: 3 mm → Assembly precision: < 1 mm

Photo detection efficiency (PDE) Dark count rate (DCR) Transit time spread (TTS) 200 1000 Micro-channel plate $\langle \sigma_{TTS} \rangle$ = 7 ns Microchannel plate (DCR) = 15.7 kHz Micro-channel plate $\langle PDE \rangle = 30.1 \%$ 200 175 Dynode (DCR) = 15.8 kHzDynode $\langle \sigma_{TTS} \rangle = 1.3$ ns Dynode $\langle PDE \rangle = 28.5 \%$ [ZHX[/] [XHX[/]] [125] 800 [s150 sLMI jo] sLMI jo 75 All (DCR) = 9.7 kHz of PMTs [/0.25%] All (PDE) = 29.6 % of 600 of water-proof S. sub-L 100 potted PMTs 400 sample of 75 # 50 # # 50 200 25 25 0 6 8 10 12 14 0 2 20 80 100 20 25 30 35 40 40 60 TTS Laser Corrected [ns] DCR [kHz] PDE Corrected [%]

Large Photomultiplier Tube Electronics Readout Scheme

Large PMT Installation Module (Green: Under water box)

Diver with under water box in 40 m depth Test in the Y-40 pool of the Montegrotto thermal spa in Italy

Validation and integration

tests of the JUNO 20-inch

PMT readout electronics

NIM A 1053, 2023, 168322

Wet electronics **Dry** electronics Custom ADC Under Water Box (UWBox) 14 bit. 1 Gsps Up to 100 m Trigger LV CAT6 + low Z Electronics power cables High Front Voltage End Unit Chip ADC Back End Sync 1.5 - 3.5 m cables Card link (signal and HV) ADC Front **FPGA** End CLK ADC Chip High Voltage Unit Async link ADC Front High Gbit End DAQ Voltage ADC Enterpise Chip DDR3 Unit Switch Up to 100 m 2 GB RAM for SN bursts CAT5 cable Custom HV Global Control Unit (GCU) (0 - 3 kV) / 300µA

Full waveform digitization

- High speed: 1 Gsample/s
- High resolution: 14 bits

Two Flash ADC converters

- Low-gain stream: from 1 PE to 100 PE with 1 PE resolution
- High-gain stream: from 100 PE to 1,000 PE with 0.1 PE resolution
- Single PMT trigger at 50 kHz 100 kHz single trigger rate
- Stand high rates for very short times (up to 1 MHz for 1 s)

For supernova burst

All triggerless data stored using 2 GB RAM shared by 3 PMTs

Commissioning of Large PMTs and Small PMTs

- Regular light-off/light-on tests during detector assembly started
 - Light off tests: full data taking and processing chain with PMT HV on
 - Light on tests: joint elec./trigger/DAQ/DCS test with PMT HV off
- Very good electronics, shielding and grounding
 - Electronics noise of large PMTs is 2.8 ADC counts, 4 % of SPE
 - ➔ Much better than the design of 10 %
 - $\circ~$ Electronics noise of small PMTs is 2.8 ADC counts, \sim 5 % of SPE
 - \rightarrow Much lower than the trigger threshold of 1/3 p.e.
- All tested PMTs (710 large PMTs and 3,184 small PMTs) are working well
- More tests will continue being made as installation progresses

Energy Scale Calibration

Calibration strategy of the JUNO experiment J. High Energ. Phys. 2021, 4

- Requirement for NMO:
 < 1 % energy linearity and
 3 % effective energy resolution
- Regular calibration using radioactive sources
 + pulsed UV laser source by several calibration systems

26,500 small (3-inch) PMTs are complementary system to validate large (20-inch) PMTs calibration

Organic Liquid Scintillator of JUNO

A complete optical model for liquid-

scintillator detectors

 Composition studied for maximal light yield in a pilot plant at Daya Bay Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector <u>NIM 988, 2021, 164823</u>

Solvent LAB (linear alkylbenzene)

Fluor **2.5 g/L PPO** (2,5-diphenyloxazole)

Wavelength-shifter **3 mg/L bis-MSB** (1,4-bis(2-methylstyryl)benzene

Before filling JUNO, the liquid scintillator goes through a purification chain.

Removal of gaseous impurities such as ^{222}Rn , ^{85}Kr , ^{39}Ar with water steam and/or N_2

Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability <u>NIM A 925, 2019, 6-17</u>

Improvement of radio-purity and optical properties such as more transparency, less absorbance

Radiopurity during filling of JUNO will be validated by the pre-detector OSIRIS – Online Scintillator Internal Radioactivity Investigation System

JUNO-TAO - Taishan Antineutrino Observatory

Satellite detector of JUNO at \sim 44 m from Taishan reactor core 1

- High-precision measurement of the unoscillated reactor antineutrino energy spectrum, \sim 1,500 IBD events per day
- Providing model-independent reference spectrum for the determination of the neutrino mass ordering in JUNO
- Benchmark measurement to test nuclear databases
- Energy resolution < 2 % at 1 MeV (4,500 P.E. / MeV)
- 2.8 ton detector using gadolinium-loaded liquid scintillator at 50°C, 1.8 m in diameter acrylic sphere
- ~ 10 m² SiPMs used to achieve ~ 100 % coverage,
 - > 50 % photon detection efficiency
 - \rightarrow cooled down to -50°C to further lower dark noise

Calibration strategy of the JUNO-TAO experiment <u>Eur. Phys. J. C 82, 1112 (2022)</u>

JUNO-TAO - Taishan Antineutrino Observatory

TAO built and tested at IHEP

to be transferred to Taishan power plant

Expected performance

Physics Prospects

JUNO will detect reactor electron antineutrinos via inverse beta decay (IBD)

$$\overline{\nu}_{e} + p \rightarrow e^{+} + n$$

$$\stackrel{n}{\swarrow} \stackrel{delayed}{\sim} \stackrel{n}{\swarrow} \stackrel{p}{\swarrow} \stackrel{prompt}{\swarrow} \stackrel{\gamma (2.2 \text{ MeV})}{\swarrow} \stackrel{prompt}{\longleftarrow} \stackrel{\gamma (511 \text{ keV})} \stackrel{(511 \text{ keV})}{\longleftarrow} \stackrel{(511 \text{ keV})}{\overset{(511 \text{ keV})}{\longleftarrow}} \stackrel{(51 \text{ keV})}{\overset{(511 \text{ keV})}{\longleftarrow}} \stackrel{(51 \text{ keV})}{\overset{(511 \text{ keV})}{\longleftarrow}} \stackrel{(51 \text{ keV})}{\overset{(51 \text{ keV})}{\overset{(51 \text{ keV})}{\longleftarrow}} \stackrel{(51 \text{ keV})}{\overset{(51 \text{ keV})}{\overset{(51 \text{ keV})}{\overset{(51 \text{ keV})}{\longleftarrow}} \stackrel{(51 \text{ keV})}{\overset{(51 \text{ keV})}{$$

- Prompt + delayed signal: large background suppression
- Reaction threshold: 1.8 MeV
- Proxy for antineutrino energy:

$$E_{
m vis}({
m e}^+)\simeq E(\overline{
u})-0.8\,{
m MeV}$$

JUNO will determine the neutrino mass ordering at 3 σ after 6 years data taking.

12/07/2023

Measuring the energy spectrum in unprecedented resolution of

3 % at 1 MeV and < 1 % energy linearity

Selection Criterion	Efficiency (%)	IBD Rate (day ⁻¹)
All IBDs	100.0	57.4
Fiducial Volume	91.5	52.5
IBD Selection	98.1	51.5
Energy Range	99.8	-
Time Correlation (ΔT_{p-d})	99.0	-
Spatial Correlation (ΔR_{p-d})	99.2	-
Muon Veto (Temporal⊕Spatial)	91.6	47.1
Combined Selection	82.2	47.1

Reactor neutrino signal: 47.1 day⁻¹ ± 1.5% (syst.) (Yangjiang + Taishan + Daya Bay NPPs, no duty cycle)

normal ordering and

inverted ordering

hypotheses

and compare:

Sub-percent Precision Measurement of Neutrino Oscillation Parameters

• Simultaneous measurement of solar and atmospheric oscillation modes for the first time

Unitarity test of PMNS matrix possible

Central Value PDG2020 100 days 20 years 6 years 2.5283 ± 0.034 (1.3%) $\pm 0.021 (0.8\%)$ ±0.0047 (0.2%) $\pm 0.0029 (0.1\%)$ $\Delta m_{31}^2 \; (\times 10^{-3} \; \mathrm{eV^2})$ $\Delta m_{21}^2 \; (\times 10^{-5} \; \mathrm{eV}^2)$ 7.53 ±0.18 (2.4%) ± 0.074 (1.0%) $\pm 0.024 (0.3\%)$ $\pm 0.017 (0.2\%)$ $\sin^2 \theta_{12}$ 0.307 ±0.013 (4.2%) ±0.0058 (1.9%) ± 0.0016 (0.5%) ± 0.0010 (0.3%) $\sin^2 \theta_{13}$ 0.0218 ±0.0007 (3.2%) ±0.010 (47.9%) ± 0.0026 (12.1%) ± 0.0016 (7.3%)

Further Physics Topics

Atmospheric neutrinos several per day

Enhancing NMO sensitivity $> 3 \sigma$ after 6 years

JUNO sensitivity to low energy atmospheric neutrino spectra <u>Eur. Phys. J. C 81, 887 (</u>2021)

Solar neutrinos ⁸B ~ 50 per day ⁷Be ~ 10^4 per day CNO ~ 10^3 per day

JUNO sensitivity to ⁷Be, pep, and CNO solar neutrinos <u>JCAP10(2023)022</u> (2023) Supernova

Supernova neutrinos ~ 10⁴ for CCSN at 10 kpc

Real-time Monitoring for the Next Core-Collapse Supernova in JUNO <u>arXiv.2309.07109</u> (2023), accepted by JCAP

Neutrino physics with JUNO J. Phys. G: Nucl. Part. Phys. 43 030401 (2016) JUNO physics and detector Prog. in Part. and Nucl. Phys. 123 (2022) 103927

Feasibility and physics

potential of detecting ⁸B

solar neutrinos at JUNO

Chinese Phys.

C 45 023004 (2021)

Summary

- JUNO will be the largest liquid scintillator detector in the world with unprecedented energy resolution.
- JUNO will determine the neutrino mass ordering with 3σ after 6 years of data taking using reactor antineutrinos.
- JUNO will be an observatory for geoneutrinos, atmospheric neutrinos, solar neutrinos, supernova neutrinos, proton decay, and other exotic new physics.

2013	2014	2015 - 2021	2017 Start of acrylic sphere production	e 2022	2023	2024	2025
Project approved	Collaboration formed	Civil construction 2016	Start of PMT production & Central detector parts	Detector const installation and	truction, d comissioning	Liquid scintillato detector comple start of data taki	r filling, tion and ing

Thank you for your attention!

Top Tracker (TT)

The JUNO experiment Top Tracker <u>NIM A 1057, 168680</u> (2023)

- Constituted by decomissioned 496 OPERA modules
- Covers ~ 60 % of the Central Detector (CD) & Water Cherenkov Detector (WCD)
- 30 % of all atmospheric muons passing through the CD pass through all 3 layers of the TT
 → Veto, especially at chimney region
 → Remaining WCD and CD
- TT wall: two planes of plastic scintillator strips, one per transverse direction (63 TT walls)
- New electronics due to high rate produced by high rock radioactivity, threshold 1/3 P.E.: full detector rate ~ 8 MHz time coincidence in single TT wall & in 3 aligned walls of different layers → ~ 2 kHz compared to
 - ~ 4 Hz of atmospheric muons
- Offline 3D reconstruction of muon track → few Hz
- 93 % trigger efficiency & 0.2° median angular resolution (20 cm at bottom of WCD)

700 m depth to detector center
1,800 meter water equivalent
15 per hour per m² muon flux

 Combined with CD or WCD, TT provides well reconstructed muon sample with > 99 % purity
 → used to calibrate & tune algorithms to improve reconstruction algorithms for CD and WCD of atmospheric muons & veto affected regions

Δχ² Constributions from Different Energies

 $\Delta \Box^2 = \Box^2_{false} - \Box^2_{true}$ – two independent fits for two NMO assumptions

PMNS parameters free in the fit: Δm_{21}^2 , $\sin^2\theta_{12}$, Δm_{31}^2 , $\sin^2\theta_{13}$

Nuisance parameters (for JUNO and TAO):

- Normalization
- Background rates
- Energy resolution
- Detector response non-linearities

. . .

Breakdown of Systematics Effects for $\Delta \chi^2$

Uncertainties	$\Delta\chi^2_{ m min}$	$\Delta \chi^2_{\rm min}$ change
Statistics	11.3	0.0
Stat. + Reference spectrum	10.7	-0.6
+ Nonlinearity	10.3	-0.4
+ Geoneutrinos	9.8	-0.5
+ World reactors	9.5	-0.3
+ Accidental	9.2	-0.3
+ ⁹ Li/ ⁸ He	9.1	-0.1
+ Other backgrounds	9.0	-0.05
Total	9.0	0.0

Geoneutrinos

- Originate from β-decays of radioactive elements in the interior of the Earth
- Only ²³⁸U and ²³²Th component can be detected via IBD due to the 1.8 MeV reaction threshold
- Reactor neutrinos constitute the largest background

Expected results: JUNO will collect the largest dataset of geoneutrinos in about 1 year (1–2 events / day) Geoneutrinos Precision of total geoneutrino signal with Th/U mass ratio fixed to 3.9: **Existing measurements:** Borexino: 17% [PRD 2020] ~8% in 10 years KamLAND: 15% [GRL 2022] Precision of U and Th components in 10 years: ²³²Th ~35% 238 ~30% 232Th+238U~15% ²³²Th/²³⁸U ~55% Separation of crust and mantle signal

Atmospheric Neutrinos

- Neutrino oscillations and NMO can be studied using atmospheric neutrinos complementary to reactor neutrinos
- > 3 σ after 6 years
- Additional measurement of $\sin^2\theta_{23}$

 Flavor - dependent energy spectrum can be measured in 0.1 GeV - 10 GeV energy range

12/07/2023

JUNO sensitivity to low energy atmospheric neutrino spectra <u>Eur. Phys. J. C 81, 887 (</u>2021)

Solar Neutrinos

JUNO sensitivity to ⁷Be, pep, and CNO solar neutrinos <u>JCAP10(2023)022</u> (2023)

- Nuclear fusion in Sun produces $\, {oldsymbol v}_{e} \,$
- Probe solar metallicity
- Elastic scattering detection channel: $\nu + e^- \rightarrow \nu + e$
- cosmogenic background (muons)
 → triple-fold coincidence techniques, e.g. for ¹¹C
- external (detector) backgrounds \rightarrow fiducial volume
- internal backgrounds (radioactivity)
 → pure scintillator, spectral fit

Minimal requirement for JUNO NMO

Low

— Very Low

Best radiopurity reached by Borexino (BX)

²³⁸U and ²³²Th: $\leq 10^{-17} \text{ g/g} \leq 10^{-16} \text{ g/g} \leq 10^{-15} \text{ g/g}$ Background scenario

___ High

BX stat. BX stat.+syst.

Solar Neutrinos

Elastic scattering detection channel:

 $\nu + e^- \rightarrow \nu + e^-$

High energy ⁸B neutrinos

- Possibility to use CC and NC interactions on $^{\rm 13}{\rm C}$
- Unprecedented detection threshold at 2 MeV
- More precision: contribute to solve metallicity puzzle
- Spectral shape: study day/night asymmetry + other NSI

Feasibility and physics potential of detecting ⁸B solar neutrinos at JUNO <u>Chinese Phys. C **45** 023004</u> (2021)

Core Collapse Supernova Burst Neutrinos

Real-time Monitoring for the Next Core-Collapse Supernova in JUNO <u>arXiv.2309.07109</u> (2023), accepted by JCAP

Inverse beta decay: $\bar{\nu}_e + p \rightarrow e^+ + n \sim 5,000$ events Elastic neutrino-electron scattering: $\nu + e^- \rightarrow \nu + e^- \sim 300$ events Elastic neutrino-proton scattering: $\nu + p \rightarrow \nu + p \sim 2,000$ events

CCSN flux from all neutrino flavors with high statistics \rightarrow constrain CCSN physics

Multi-messenger Astronomy

- Multi-messenger (MM) trigger:
 - Lower energy threshold (~ O(10 keV))
 - Increase signal statistics
 - All triggerless data stored using 2 GB RAM shared by 3 PMTs
- JUNO as powerful neutrino telescope for transient MM observations
- Major player in the next-generation Supernova Early Warning System (SNEWS 2.0)

JUNO physics and detector Prog. in Part. and Nucl. Phys. 123 (2022) 103927

Diffuse Supernova Neutrino Background

- Integrated neutrino signal from all supernovae (SNe) explosions in the Universe
- Encodes average core-collapse SN neutrino • spectrum, cosmic star formation rate, fraction of failed black hole forming SNe

Prospects for detecting the diffuse supernova neutrino background with JUNO JCAP 10 (2022) 033 (2022)

$\overline{\nu}_{e} + p \rightarrow e^{+} + n$

- ~ 2 to 4 IBDs events per year •
- Expected significance:
 - after 3 years \rightarrow 3 σ sensitivity Ο
 - after 10 years \rightarrow 5 σ sensitivity Ο
- Non-observation would still improve current • best limits and exclude significant region of model parameter space

Diffuse Supernova Neutrino Background

Prospects for detecting the diffuse supernova neutrino background with JUNO JCAP 10 (2022) 033 (2022)

Proton Decay

Multi-pulse fitting

Sterile Neutrinos

Sensitivity at the Δm^2 region of 0.05 – 1 eV²:

complimentary to the longer baseline experiments

Indirect Dark Matter

- Self-annihilation of dark matter in the Milky Way
- IBD channel
- Expected limit for the range 15 100 MeV: 1.1 x 10⁻²⁵ cm³ s⁻¹ in 10 years

Detection in the IBD channel

PSD for atmo-nu rejection

15-100 MeV range

JUNO limit in 10 years (in terms of thermally averaged self-annihilation rate)

 $\langle \sigma v \rangle = \! 1.1 \times 10^{-25} \, \mathrm{cm}^3 \, \mathrm{s}^{-1}$

<u>JCAP09(2023)001</u> (2023)

